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The densities considered usually in the Hohenberg-Kohn energy functional E%[p] are the opti-
mal ones for a given external potential v(r). Frozen-Density Embedding Theory (FDET) concerns
the functional EXX[p] for other densities. They are obtained from the constrained optimisation
of EXE[p]. The constraint (V,.p(r) > pp(r)) is expressed by means of an observable (pg is the
electron density such that [ pp = N < [ p). FDET provides the exact relations between the
optimal embedded wavefunction, the embedding potential, and the energy, for given pp. Various
FDET based multi-scale/multi-level simulation methods are possible differing in:

a) The method to solve the N4-electron problem (with N4 < [ p). FDET encompasses Kohn-
Sham like non-interacting reference electrons [1] and both variational [2] and non-variational [3].
b) The approach to generate the constraint (from conventional atomistic representation of pg,
through experimental pz [4] till continuum representation of pp (see Ref. [5] and the references
there).

c) The approximation used for certain components of the FDET energy functional.

In any of such variants, the embedded wavefunction (¥ 4) is obtained from an eigenvalue equation
featuring ¥ 4-dependent external potential.

In the first - introductory - part, the basic FDET relations will be presented. In the second part,
we review our recent work on development of approximations to the kinetic-energy component
of the FDET embedding potential (see Ref. [6] and the references there). In the third part, we
present the recently derived exact FDET relation for excitation energy in case of state-dependent

ps [7].
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