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1. Only molecular crystals are taken into account

2. A fictitious crystal is considered:

a. each crystal-unit does not interact with the other ones

b. the electron density of the fictitious system is identical to the electron density of the real crystal

3. Each crystal-unit wavefunction has a well-defined form according to the chosen ansatz (e.g., single Slater determinant)

Fictitious Non-Interacting Crystal Real Interacting Crystal
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The unit-cell electron density for the fictitious crystal can be written as
Nm Nm
F _ _ —1
pcell(r) _ Z Pj (I’) — Z IOO(Qj (I’ o q]))

The wave function W is not obtained through a simple isolated Quantum Mechanical calculation, but...

... finding those Molecular Orbitals that:

1. minimize the energy associated with the single Slater determinant;

2. reproduce as much as possible a set of structure factor amplitudes.
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X-ray Restrained Wavefunction Calculations: An Example (1)

- L-alanine crystal structure determined at 23 K.

- Single-point calculations (crystal geometry) at Hartree-Fock, B3LYP and
XR-Hartree-Fock levels with basis sets of increasing size and flexibility:

*3-21G

* 6-31G(d)

* cc-pVDZ

* 6-311G(d,p)

* aug-cc-pVDZ

* 6-311++G(2d,2p)

- X-ray restrained wavefunction calculations with unit-cell parameters,

thermal parameters and structure factor amplitudes deposited with

R. Destro et al., J. Phys. Chem. 92, 966 (1988)

the crystal structure.
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X-ray Restrained Wavefunction Calculations: An Example (2)

VALUES OF THE STATISTICAL AGREEMENTS (;(2 )
Basis-Set RHF B3LYP XR-RHF (Amax) _I 391G
3.21G 5.66 3.70 1.71 (0.58) B gj}}fédgizp)

6-31G(d) 2.94 2.18 1.26 (0.32)

cc-pVDZ 3.02 2.09 1.23 (0.30) o
6-311G(d,p) 2.94 2.26 1.21 (0.28)
aug-cc-pVDZ 2.74 2.16 1.20 (0.26) 2o

6-311++G(2d,2p) 2.78 2.27 1.17 (0.28) e B e e S
0 Oll 0!2 | 0|3 0|4
A

IF GOOD-QUALITY CRYSTALLOGRAPHIC DATA ARE AVAILABLE AND
SUFFICIENTLY FLEXIBLE BASIS-SETS ARE USED, THE IDEAL STATISTICAL
AGREEMENT CAN BE REACHED QUITE EASILY
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X-ray structure factors should intrinsically contain electron correlation and
crystal-field effects on the electron density

Let us consider four possible cases for restraints in the XRW calculations:

1. X-ray structure factors from traditional (high-resolution) X-ray diffraction experiments

‘ > correlation + intermolecular interactions + experimental errors

2. X-ray structure factors from periodic ab initio calculations

‘ > intermolecular interactions (+ correlation)

3. X-ray structure factors from gas-phase ab initio calculations

‘ > correlation only

4. X-ray structure factors from single-molecule X-ray diffraction experiments (e.g., X-ray free electron laser experiments)

‘ > correlation + experimental errors
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XRW Equations as Generalized Kohn-Sham Equations

Let us rewrite the XRW equations for a ZN-electron closed-shell system as follows:

. ! : ) A TTW TTW TTrW LTTW
e () = [—oV2 4 o(r) + 2G4 K+ 07 677 (x) = €67 677 (r)
- v(r) as the external potential

- G and K as the Coulomb and Exchange operators

- V""" as the Jayatilaka operator due to the perturbation of the X-ray data used as restraints

A A calc| (g
> 0" =AY KnRe{Fe"} g+ A Y KnIm{F% Y fno  with Kp— 21 " \Fh2 \ |th ’|
h h N, — Np o ‘Fﬁa C‘

The XRW equations can be rewritten in the form of generalized Kohn-Sham equations (with exact exchange):

5V o) +un(e) + 8] 657 (r) = €7 67 )

1
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These generalized Kohn-Sham equations can be inverted to obtain
the corresponding XRW exchange-correlation potentials
(associated with the X-ray diffraction data)
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Orbital-Averaged XRW Exchange-Correlation Potentials (1)

1 1

oV o(r) + o () + 30| 67 () = €7 67 (1)

- multiplying the equation by 2 ¢"**(r) (to be done for each occupied molecular orbital)
Plying Q Y £ @; P

- summing the results of the previous multiplications, over i from 1 to N

- dividing by the XRW electron density p**¥(r)

—> XRW inversion formula (analogous to the Kohn-Sham inversion formula)

TEW(p) 1 V2p*"¥(r)
() = (n) - i 1 T o) — o)
where:
5 N
VITW (1) = B Z o7 (r) usl 7 (r) > orbital-averaged XRW exchange-correlation potential
5 N
eTTW (1) = prTy Z X | pET ()| > average local XRW orbital energy
i=1
al 2
T (r) = Z |V¢f""w (r)‘ > positive-definite form of the XRW kinetic energy density
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TZET"UJ (r)

pr(r)

1 v2pxrw (I‘)
4 pxrw (I')

Ve (r) = e (r) .

v(r) —vg(r)

An orbital-averaged XRW exchange-correlation potential can be simply obtained from an
external potential v(r), a given set of occupied X-ray restrained molecular orbitals {qbl.x”w(r)},

and a given set of X-ray restrained orbital energies {el.x”w}

Possibility of determining orbital-averaged XRW “correlation”potentials:

v (r) ={vge (r) — vg™(r)

> both potentials constructed using the same density

In particular:

VITW (1) > orbital-averaged XRW exchange-correlation potential (seen above)

VITW (1) > obtained by exploiting the inversion formula with molecular orbitals and orbital
energies resulting from the simple diagonalization of the exchange-only Kohn-
Sham Hamiltonian constructed with the self-consistent XRW molecular orbitals
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The presented strategy is a density-to-potential mapping

l

Fitting of the exchange-correlation potential to the target density

Density-to potential mappings are not always sufticiently rigorous

1. Electron densities resulting from Gaussian basis sets — xc-potentials oscillating at the nuclei and diverging at large distances

—> problem partially solved by subtracting an oscillation profile which depends on the basis set used in the calculations
[see Kananenka et al., J. Chem. Phys. 139, 074112 (2013); Gaiduk et al., J. Chem Theory Comput. 9, 3959 (2013)]

. Small changes in the density may correspond to large changes in the xc-potentials —> mapping problem ill-posed

[ oo

. In finite basis set calculations the density-to-potential mapping is not unique —> task of fitting an xc-potential to a given

density becomes ambiguous

S Proving that the capture of correlation and crystal effects on the electron density by
the XRW method reflects onto the extracted orbital-averaged potentials

l

Extraction of v "(r) and v:""(r) potentials from X-ray data by going beyond the inversion of the XRW equations
(e.g., by exploiting the modified Ryabinkin-Kohut-Staroverov approach)
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xc-Potentials from X-ray Data: First Conclusions and Outlooks

The capture of correlation and crystal effects on the electron density through the XRW method retlects
onto the exchange-correlation potentials obtained by inverting the XRW equations

l

Necessary to go beyond the simple inversion of the XRW equations to avoid
numerical instabilities typical of density-to-potential mapping strategies

!

Combination of the XRW method with the modified Ryabinkin-Kohut-Staroverov (mRKS) strategy
[analytical expression of v_(r) that is exact in a complete (infinite) basis set]

Other possibilities to be explored in this context:

- Different exact exchange contribution in the XRW equations > "Full” extraction of exchange-correlation
potentials from experimental or theoretical X-ray
structure factors

- Extracted XRW xc-potentials as models or “ingredients” to propose new xc-functionals (as in the case of HCTH functionals)

- XRW method to remodulate/refit existing density functionals > Exchange-correlation functionals fully compatible

with experimental or high-level theoretical
electron densities



Quantum Chemistry & X-ray Diffraction Measurements

Methods with a strong interplay between quantum chemistry and X-ray diffraction measurements
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X-ray diffraction data are directly integrated into
quantum mechanical calculations to enhance the
information content of the wavefunction
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X-ray structure factors to obtain improved electron
densities and wavefunctions usually resulting from
quantum chemistry calculations
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> Independent Atom Model (IAM): electron density as a sum
of spherically averaged atomic electron densities

e Standard structural refinements of X-ray diffraction data

® - Sufficient for the positions of non-H atoms

° . @ - Chemical bonds and lone-pairs are
‘ ‘ neglected

“. ‘. - Too short element-hydrogen (E-H) bond

lengths compared to reference neutron
o values (wrong positions of H atoms)

Residual density of L-Alanine after IAM refinement
(from -0.16 eA3 to +0.16 eA-3)

Aspherical atom models, where the deformations due to
chemical bonding are implicitly considered

* Need of going beyond the IAM approximation: >

- importance of correctly locating the
positions of hydrogen atoms (biochemistry,
supramolecular chemistry & crystal
engineering, materials science)

- Chemical bonds and lone pairs are taken

INto account

- Improvement of E-H bond lengths

- intrinsic limitations of the neutron compared to the IAM values

diffraction technique (e.g., nuclear reactors,
or spallation sources for measurements)
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l

Refinement technique strongly based on tailor-made quantum chemistry calculations

By only using X-ray data, HAR is able to locate the positions of the hydrogen atoms with the same
precision and accuracy attained through neutron diffraction measurements

l

This remains true also if we exploit X-ray diffraction data at resolutions as low as 0.8 A

Obtaining accurate and reliable E-H bond lengths from standard X-ray diffraction measurements
(with standard laboratory diffractometers) is now possible

D. Jayatilaka & B. Dittrich, Acta Cryst. A 64, 383 (2008) M. Woinska, D. Jayatilaka et al., Acta Cryst. A 70, 483 (2014)
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As the name suggests, HAR relies on the Hirshteld partitioning method

Hirshfeld Atom Refinement (1)

!

Molecular electron densities are subdivided into atomic contributions proportional to the contributions of
the corresponding spherical atomic densities in a promolecule consisting of non-interacting spherical atoms

l

Hirshteld atomic density for atom A

pa(r)|=[wa@)]pu(r)

> wA(r) =

0

l

Global molecular electron density

pu(r —Ry)

‘ZB pp(r — RB)\
\

l

Promolecular electron density

F. L. Hirshfeld, Isr. J. Chem. 16, 198 (1977)
F. L. Hirshfeld, Theoret. Chim. Acta 44, 129 (1977)

v

Spherical electron density of atom A in the promolecule
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v

Typical SPHERICAL density | Typical ASPHERICAL
From M. Woinska et al., Sci. Adv. 2, e1600192 (2016) H|rshfe|d atomic density

v

used in IAM refinements

The deformations of the atomic densities due the presence of bonds are well captured
by the ASPHERICAL SHAPE OF THE HIRSHFELD ATOMS

l

Although quite small, the aspherical deformations are probably the reasons why HAR

is so successful in determining the positions of hydrogen atoms from X-ray data
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e ELMOs are orbitals strictly localized on small molecular fragments (e.g., atoms, bonds and functional groups)
e ELMOs can be unambiguously associated with small molecular subunits

 ELMOs can be considered as plausible “electronic LEGO building blocks” than can be transterred from a molecule to another

> Preliminary investigations on ELMOs transterability

\ 4

Assembling ELMO-libraries to reconstruct approximate wavefunctions and
electron densities of large molecules (polypeptides and proteins)

B. Meyer, B. Guillot, M. F. Ruiz-Lopez, A. Genoni, J. Chem. Theory Comput. 12, 1052 (2016)
B. Meyer, B. Guillot, M. F. Ruiz-Lopez, C. Jelsch, A. Genoni, J. Chem. Theory Comput. 12, 1068 (2016)
B. Meyer, A. Genoni, J. Phys. Chem. A 122, 8965 (2018)



Libraries of Extremely Localized Molecular Orbitals

ELMO LIBRARIES

\?“Hk,

| Transfer of ELMOs

B. Meyer, A. Genoni, J. Phys. Chem. A 122, 8965 (2018)



Libraries of Extremely Localized Molecular Orbitals

ELMO LIBRARIES

Transfer of ELMOs

ARG

PEPECND

 The libraries cover all the elementary units of
the twenty natural amino acids;

B. Meyer, A. Genoni, J. Phys. Chem. A 122, 8965 (2018)



Libraries of Extremely Localized Molecular Orbitals

ELMO LIBRARIES

| Transfer of ELMOs
lllllll —9
ASP ARG
> & >

 The libraries cover all the elementary units of
the twenty natural amino acids;

e Amino acids in all their possible protonation
states and forms (N-terminal, C-terminal, non-
terminal);

B. Meyer, A. Genoni, J. Phys. Chem. A 122, 8965 (2018)



Libraries of Extremely Localized Molecular Orbitals

ELMO LIBRARIES

Transfer of ELMOs

_9
> <
 The libraries cover all the elementary units of e Possibility of including tailor-made ELMOs for
the twenty natural amino acids; fragments of particular molecules (e.g., ligands)

e Amino acids in all their possible protonation
states and forms (N-terminal, C-terminal, non-
terminal);

B. Meyer, A. Genoni, J. Phys. Chem. A 122, 8965 (2018)
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ELMO LIBRARIES

Transfer of ELMOs

_9
> <
 The libraries cover all the elementary units of e Possibility of including tailor-made ELMOs for
the twenty natural amino acids; fragments of particular molecules (e.g., ligands)
e Amino acids in all their possible protonation e ELMO-libraries available for different
states and forms (N-terminal, C'terminal, Nnon- Standard basis sets Of quantum Chemistry

terminal);

B. Meyer, A. Genoni, J. Phys. Chem. A 122, 8965 (2018)
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ELMO Libraries: Application to a Protein
Antifreeze Protein RD1 (PDB Code: 1UCS, 64 residues, 997 atoms)

Global CPU time with 6-311G** basis-set:
~2.5 minutes Vs. ~ 10 days for Hartree-Fock calculation

ELMO Electron Density (0.001 e/bohr3 isosurface)

B. Meyer, A. Genoni, J. Phys. Chem. A 122, 8965 (2018)
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QM/ELMO Embedding Method

ELMOs and ELMO libraries were the bases for the development of a new multi-scale embedding methoad:

Quantum Mechanics/Extremely Localized Molecular Orbital (QM/ELMO) technique

ELMO Region QM Region ELMO Region

Y]_ Y2
® Chemically active region treated at fully quantum chemical level (QM region)

® Environment described through transferred and frozen extremely localized molecular orbitals (ELMO region)

r )
® |nitially developed in the framework of the restricted Hartree-Fock formalism

® Extended to other ground state methods: DFT, post-Hartree-Fock techniques (MP2, Coupled Cluster, etc.)

® Combined with strategies for excited states: Time-Dependent DFT, Equation-of-Motion Coupled Cluster and IMOM

® More recently generalized to QM/ELMO/MM (outermost layer treated at molecular mechanics level)

\_ J
G. Macetti, A. Genoni, J. Phys. Chem. A 123, 9420 (2019) G. Macetti, E. K. Wieduwilt, A. Genoni, J. Phys. Chem. A 125, 2709 (2021)
G. Macetti, E. K. Wieduwilt, X. Assfeld, A. Genoni, J. Chem. Theory Comput. 16, 3578 (2020) G. Macetti, A. Genoni, J. Chem. Theory Comput. 17, 4169 (2021)

G. Macetti, A. Genoni, J. Chem. Theory Comput. 16, 7490 (2020) G. Macetti, A. Genoni, J. Phys. Chem. A 125, 6013 (2021)
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The computational cost of HAR increases with the size of the system under exam

l

In its original version, HAR cannot be straightforwardly applied to macromolecules

We need QM methods that provide almost instantaneously
wavefunctions and electron densities of very large systems

l

Coupling of HAR with quantum chemistry methods based
on Extremely Localized Molecular Orbitals (ELMOs)

l

Coupling of HAR with ELMO libraries and QM/ELMO approach
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HAR-ELMO: Application to Polypeptides

General statistics for E-H bond-lengths
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HAR-ELMO: Computational Cost
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HAR-ELMO: Computational Cost

Leu-Enkephalin 0:9:52:00 0:1:44:17
Fibril-forming segment 1:7:00:00 0:0:22:56

Crambin (0.54 A)
Crambin (0.73 A)

Significant reduction in terms of CPU time by applying the HAR-ELMO method
to systems for which the original HAR-HF refinement is still feasible

HAR-ELMO ALLOWS QUANTUM CRYSTALLOGRAPHIC REFINEMENTS WHEN THE APPLICATION

OF THE TRADITIONAL HAR-HF METHOD IS IMPOSSIBLE/IMPRACTICAL

L. A. Malaspina, E. K. Wieduwilt,..., S. Grabowsky, A. Genoni, J. Phys. Chem. Lett. 10, 6973 (2019)
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HAR-ELMO already provides quite successful results for the determination of hydrogen atom positions
in relatively large systems using only X-ray diffraction data

l

But... need and room for further improvements

l

For example, more accurate E-H bond lengths in active sites of proteins
or in case of agostic interactions in organometallic compounds

The only ELMO description is probably not enough — Fully QM electron densities (even post-HF) for these crucial regions

|—> Coupling HAR with the QM/ELMO approach

(currently under development)

QM/ELMO already coupled with HAR in a different way > Accurate refinements ot small molecule crystal structures
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HAR-QM/ELMO method to refine crystal structures characterized by strong intermolecular interactions

(traditional strategy ot using surrounding point charges and dipoles is not enough)

l

QM/ELMO strategy for the quantum chemical calculations of HAR with:
* the chosen reference crystal unit corresponding to the QM region

e the crystal environment described by means of transferred and frozen ELMOs
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The HAR-QM/ELMO Method

HAR-QM/ELMO method to refine crystal structures characterized by strong intermolecular interactions

(traditional strategy ot using surrounding point charges and dipoles is not enough)

l

QM/ELMO strategy for the quantum chemical calculations of HAR with:

Application to the refinement of the xylitol crystal structure (network of strong hydrogen bonds)

_ B3LYP/cc-pVDZ
1.004

Bond length /A
o
(Oa

0.90-

O1-H11 02-H12 O3-H13 O4-H14 O5-H15

E. K. Wieduwilt, G. Macetti, A. Genoni, J. Phys. Chem. Lett. 12, 463 (2021)

I neutron

[ 1 no embedding

[ 4 A cluster charges

Bl 8 A cluster charges

[ 4 A ELMOs
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* the chosen reference crystal unit corresponding to the QM region

e the crystal environment described by means of transferred and frozen ELMOs
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Concluding Remarks

Methods with a strong interplay between quantum chemistry and X-ray diffraction measurements

v v
X-ray structure factors may improve the results of Quantum chemistry calculations and quantum chemistry
quantum chemistry calculations and may potentially methods can be exploited to improve the results of traditional
lead to better quantum chemistry techniques crystallographic structural refinements

l

Quantum Chemistry and (Quantum) Crystallography are strongly related and may “contaminate”
each other to obtain better results and to develop more and more advanced methods in both fields
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