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Brief Intro to SDFT

SDFT was introduced by U von Barth and Hedin in 1972.
(Weak/zero external B: H includes − ∫ drm(r) ·B(r) term only.)

From the start, it appeared that theoretical foundation of gs DFT
was not shared by gs SDFT.

No proof for HK theorem, showing 1-1 correspondence between set
of spin potentials and set of gs spin-densities.
Either for collinear or for non-collinear densities.
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Traditionally, 1-1 mapping between v and ρ is proven in two steps:

• Show that different (v↑, v↓) have different gs Ψ. Not invertible!

• Show that different Ψ have different (ρ↑, ρ↓). Invertible

von Barth & Hedin took (N = 1) gs Ψ of any noncollinear spin
potential and constructed a class of different noncollinear spin po-
tentials that admitted Ψ as their gs.

Hence HK theorem could not hold in SDFT.
But what about N > 1?
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Problem was forgotten ... then, in 2001:

Capelle & Vignale, PRL 86, 5546 (2001)

Eschrig & Pickett, Solid State Commun. 118, 123 (2001).

• For collinear B, Capelle & Vignale gave several examples where
the spin potential was not determined uniquely by the spin density.

• Eschrig & Pickett claimed to extend von Barth and Hedin’s exam-
ple to N > 1.

Ψ can be pure-spin state or impure spin state.
Pure-spin state through local rotation of spin coordinates may be transformed to

have a definite number of spin-up and -down electrons.

If Ψ is a pure-spin state, then Ψ is also eigenstate of operator Ô.
In unrotated spin space, Ô is a noncollinear magnetic field.
⇒ spin potential in H cannot be determined by Ψ.
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Actually, things are not too bad for SDFT:

• For collinear B mapping (v↑, v↓) & Ψ is invertible ... but:

(a) (ρ↑, ρ↓) must not be fully spin-polarised.
(b) (v↑, v↓) are determined within a spin-constant.

• For noncollinear B, mapping is invertible for N > 1 (explain).
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Here we focus on two other questions in DFT vs SDFT when B = 0:

• Formal link between two exact theories when B = 0:

When B = 0, there is only one external potential v(r).

So, there must be one conjugate density ρ(r).

Should SDFT-KS equations reduce to (some) DFT-KS equations?

Is it even possible to obtain a spin-potential from a density-functional? (!)

• Link between approximate results of two theories when B = 0:

Open shells can be studied with KS-DFT or KS-SDFT.

SDFT-KS equations are used in practice, because its approximations model better

the xc functional. Is this true?
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Textbook by Parr & Yang (“DFT of Atoms and Molecules”):

“Should not the spin-polarized Kohn-Sham results reduce to the spin-compensated
results when b(r) = 0? ...

The answer is certainly yes under the condition that the exact xc functionals
Exc[ρ] and Exc[ρ↑, ρ↓] are both known and used, for then both schemes would give
the same total density ρ and energy E.

But we do not know the exact functionals. . . .

An approximate form of the spin-density functional Exc[ρ↑, ρ↓] can be (and usually
is) a better description of the real system than the corresponding approximate
Exc[ρ].”
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Ghost-exchange error in DFA treatment of open shells.

(Analogy with HK vs KS DFT for kinetic energy)
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For B = 0, the main error is in (approx.) Ex[ρ] vs Ex[ρ↑, ρ↓].

With a local or semi-local DFA it is always assumed:

ρ↑(r) = ρ(r)/2, ρ↓(r) = ρ(r)/2

Ex[ρ] ' Ex[ρ/2, ρ/2], ρ = ρ↑+ ρ↓.

This amounts to mixing partly ρ↑ with ρ↓, leading to the ...
“ghost exchange energy error ”:

Gx = Ex[ρ/2, ρ/2]− Ex[ρ↑, ρ↓].

Part of “static correlation” or “fractional spin error” discussed by Prof. W. Yang

and his group.
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The exact x energy as an implicit density functional

Ex[ρ↑, ρ↓] = −1

2

∫∫
drdx

{
|ρ↑(r,x)|2
|r− x| +

|ρ↓(r,x)|2
|r− x|

}
.

Ex separates in two disjoint terms: Ex[ρ↑, ρ↓] = Ex[ρ↑,0] +Ex[0, ρ↓],

To avoid cross-exchange the approximate Ex must also separate.
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Define for any DFA a new ghost-x-error free x-energy DF:

Analogy with KS-DFT vs HK-DFT:
employ spin-density of virtual KS-DFT system (ρ↑[ρ], ρ↓[ρ])

to model exchange energy Ex[ρ]

in general KS-DFT spin-density (ρ↑[ρ], ρ↓[ρ]) 6= physical spin-density.
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Define for any DFA a new ghost-x-error free x-energy DF:

• We model Ex[ρ] using the KS-DFT spin-density (ρ↑[ρ], ρ↓[ρ]).

Still within DFT since (ρ↑[ρ], ρ↓[ρ]) is an implicit functional of ρ:

EiDF
x [ρ] = ESDF

x

[
ρ↑[ρ], ρ↓[ρ]

]
.

iDF: x energy is an implicit DF.
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To treat xc uniformly, we write Ec as:

Ec[ρ] = EiDF
c [ρ] + ���

���
��XXXXXXXX∆Ec[ρ],

[∆Ec[ρ] 6= 0 in exact DFT.]

EiDF
c [ρ] = ESDF

c

[
ρ↑[ρ], ρ↓[ρ]

]
.

In (semi)-local DFAs we omit ∆Ec and write for xc:

EiDF
xc [ρ] ≈ ESDF

xc

[
ρ↑[ρ], ρ↓[ρ]

]
.

Hence, total energy DF is:

EiDF
ven [ρ] = Ts[ρ] +

∫
dr ven(r)ρ(r) + U [ρ] + EiDF

xc [ρ],
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vxc[ρ](r) =
EiDF
xc [ρ]

δρ(r)

vxc is determined by OEP equation (implicit DF):∫
dr′

[∑
σ
χσ(r, r′)

]
vxc[ρ](r′) =

∑
σ

∫
dr′χσ(r, r′) vσxc

[
ρ↑[ρ], ρ↓[ρ]

]
(r′)

vxc is the weighted average of v↑xc, v
↓
xc.

vσxc
[
ρ↑[ρ], ρ↓[ρ]

]
(r) =

∂ESDF
xc [ρ↑, ρ↓]
∂ρσ(r)

∣∣∣∣∣∣ρ↑=ρ↑[ρ]

ρ↓=ρ↓[ρ]

χσ(r, r′) = −2
Nσ∑
i=1

∞∑
a=Nσ+1

φi(r)φa(r)φi(r
′)φa(r′)

εa − εi
Ghost-x-error-corrected Exc, vxc for open shells in (semi)-local DFAs.
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∫
dr′

[∑
σ
χσ(r, r′)

]
vxc[ρ](r′) =

∑
σ

∫
dr′χσ(r, r′) vσxc

[
ρ↑[ρ], ρ↓[ρ]

]
(r′)

• For closed shells solution reduces to familiar KS xc FD.

• For fully spin-polarised systems (eg spin-up) vxc[ρ] = v
↑
xc[ρ,0].

• Majority-spin xc potential is an accurate approximation vxc = v
↑
xc.

Because HOMO-LUMO gap ∆↑ < ∆↓.

• Another approximation: vxc ≈
∆↓ v↑xc + ∆↑ v↓xc

∆↑+ ∆↓
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Results: cc-pVTZ orbital basis

L(S)DA gs total energies
ELDA (Ha) EiLDA (Ha) ELSDA (Ha)

Li -7.388721 -7.398145 -7.398155
B -24.43315 -24.44669 -24.44747
N -54.12891 -54.14996 -54.15110

Na -161.6491 -161.6571 -161.6572
Si∗ -288.4640 -288.4905 -288.4910

LiH+ -7.652062 -7.685603 -7.685608
O2

∗ -149.6038 -149.6383 -149.6403
OH -75.34813 -75.37077 -75.37208
NH4 -56.79800 -56.80389 -56.80404

Avg diff (mHa) 20.1 0.666 -

Uncontracted cc-pVTZ aux basis.

∗Triplet state
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Etot (Ha) ∆E (mHa)
iLDA vOEP

xc -7.398144 0.011
iLDA vwxc -7.398135 0.020
iLDA v

↑
xc -7.398136 0.019

iLDA v
↓
xc -7.396281 1.87

LDA vxc[ρ] -7.388721 9.43

Total energies for Lithium (doublet), differences relative to LSDA.
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Conclusions so far:

The ghost-x error is a qualitative error in the “restricted” KS
equations of DFAs, when open-shell electronic systems are
treated as closed shells.

We correct the ghost-x-error by redefining the XC energy as
an implicit density functional, in terms of the KS spin-density.

Our restricted KS-DFT results are almost as accurate as the
unrestricted KS-SDFT results of the same level of approxi-
mation.
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Limit of SDFT-KS equations for B = 0.
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I restrict to:

Collinear SDFT
(So, N̂↑, N̂↓ commute with H and Ψ has integer N↑, N↓.)

Pure-state v-representable densities (interacting, noninteracting)
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KS equations of exact SDFT for open shell systems and B = 0:[
−∇

2

2
+ ven(r) +

∫
d3r′

ρ(r′)
|r− r′| + vσxc[ρ

↑, ρ↓](r)

]
φσi (r) = εσi φ

σ
i (r), σ =↑, ↓

They do NOT reduce to KS equations of exact DFT:[
−∇

2

2
+ ven(r) +

∫
d3r′

ρ(r′)
|r− r′| + vxc[ρ](r)

]
φσi (r) = εi φ

σ
i (r)

Obviously!
How could one obtain a spin-potential from a density functional??
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In (S)DFT the value of an observable is a functional of ρ [or (ρ↑, ρ↓)].

e.g. for operator Ô: 〈Ô〉 = 〈Ψρ|Ô|Ψρ〉.

But this is not useful because Ψρ unknown and KS determinant not
accurate.

⇒ The density-functional for a general observable quantity is not
known. (Exceptions: E, and ρ or (ρ↑, ρ↓))

In DFT the functional for the physical spin-density is unknown.
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Limit of SDFT-KS equations for B = 0.

F [ρ] = min
Ψ→ρ

〈Ψ|T̂ + V̂ee|Ψ〉 = 〈Ψρ|T̂ + V̂ee|Ψρ〉

The minimising state Ψρ is the gs of physical system with ρ.
[ρ is pure-state v-representable.]

⇒ The physical density and spin-density are given by Ψρ.
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We separate the minimisation into two separate minimisations:

F [ρ] = min
(ρ↑,ρ↓)→ρ

[
min

Ψ→(ρ↑,ρ↓)
〈Ψ|T̂ + V̂ee|Ψ〉

]
︸ ︷︷ ︸

F [ρ↑,ρ↓]

F [ρ] = min
(ρ↑,ρ↓)→ρ

F [ρ↑, ρ↓] = F [ρ↑ρ, ρ
↓
ρ]

• The minimisation is at fixed ρ, i.e. within DFT.

• The two minimisations have the same minimum.

• The minimising ρ
↑
ρ, ρ
↓
ρ is equal to the spin-density of Ψρ.

⇒ ρ
↑
ρ, ρ
↓
ρ is the physical spin-density. (Remember this point!)
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Investigate further : F [ρ] = min
(ρ↑,ρ↓)→ρ

F [ρ↑, ρ↓] = F [ρ↑ρ, ρ
↓
ρ]

Invoke SDFT’s KS systems with spin-densities (ρ↑, ρ↓).

F [ρ↑, ρ↓] = Ts[ρ
↑, ρ↓] + Exc[ρ

↑, ρ↓] + U [ρ↑ + ρ↓]

F [ρ] = min
(ρ↑,ρ↓)→ρ

{
Ts[ρ

↑, ρ↓] + Exc[ρ
↑, ρ↓]

}
+ U [ρ] .
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Remember:
How could one obtain a spin-potential from a density functional??

Definition of (new) generalised KS system

min
(ρ↑,ρ↓)→ρ

{
Ts[ρ

↑, ρ↓] + Exc[ρ
↑, ρ↓]

}
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Minimisation under constraint, ρ↑(r) + ρ↓(r) = ρ(r):

min
(ρ↑,ρ↓)→ρ

{
Ts[ρ

↑, ρ↓] + Exc[ρ
↑, ρ↓]

}

⇒ min
ρ↑,ρ↓

{
Ts[ρ

↑, ρ↓] + Exc[ρ
↑, ρ↓] +

∫
dr λ(r) [ρ↑(r) + ρ↓(r)]

}

The Euler-Lagrange equations for the minimum: σ =↑, ↓
∂Ts[ρ↑, ρ↓]
∂ρσ(r)

∣∣∣∣∣
ρ
↑
ρ,ρ
↓
ρ

+
∂Exc[ρ↑, ρ↓]
∂ρσ(r)

∣∣∣∣∣
ρ
↑
ρ,ρ
↓
ρ

+ λ[ρ](r) = 0

⇒ vσs [ρ↑ρ, ρ
↓
ρ](r) = vσxc[ρ

↑
ρ, ρ
↓
ρ](r) + vH[ρ](r) + v[ρ](r)

Spin-potential vσs from the minimisation of density functional!

ρ
↑
ρ, ρ
↓
ρ = physical spin-density! Density-functional of magnetisation!
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Definition of (new) generalised KS system

min
(ρ↑,ρ↓)→ρ

{
Ts[ρ

↑, ρ↓] + Exc[ρ
↑, ρ↓]

}

• Minimisation searches over SDFT-KS systems with common ρ

and returns that with the correct (physical) spin-density (ρ↑ρ, ρ
↓
ρ).

• The minimising SDFT-KS system & state Φ
ρ
↑
ρ,ρ
↓
ρ
depend on ρ.

• The (unrestricted) potential vσxc[ρ
↑
ρ, ρ
↓
ρ](r) depends only on ρ.

• The minimisation defines a generalised KS (GKS) system in DFT.

• When B = 0 the SDFT-KS equations reduce to the DFT-GKS
equations.
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Conclusions

In the limit B = 0 the SDFT-KS equations reduce to the
DFT-GKS equations.

The DFT-GKS state Φ
ρ
↑
ρ,ρ
↓
ρ
gives not only the true total den-

sity but also the true spin-density.

The elusive exact density functional for the spin-density is the
spin-density of the DFT-GKS system.
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Thank you!


