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What we will need for this lecture?
What is FDET about?

Variational principle in QM:

min
Ψ→N

〈
Ψ|Ĥv |Ψ

〉
=
〈

Ψ0|Ĥ|Ψ0
〉

= E0
v

Perturbation theory (first order):

For two N-electron Hamiltonians (Ĥ′ and Ĥ) with Ψ0 being the ground-state

wavefunction for Ĥ:

E ′0 − E0 =
〈

Ψ0|Ĥ′ − Ĥ|Ψ0
〉

+ higher orders

E ′0 − E0 =

∫
ρo(r)

(
v ′(r)− v(r)

)
dr + higher orders←− if Ĥ′ − Ĥ is a potential

Density Functional Theory:

min
Ψ→ρ

〈
Ψ|Ĥv |Ψ

〉
= EHK

v [ρ] ←− The Hohenberg-Kohn density functional

min
ρ→N

EHK
v [ρ] = EHK

v [ρ0] = E0
v ←− The second Hohenberg-Kohn theorem
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What we will need for this lecture?
What is FDET about?

Functional derivative of a functional F [ρ]

vF [ρ](r) ≡
δF [ρ]

δρ(r)
= lim

h→0

F [ρ+ h · g(r)]− F [ρ]

h

for any admissible function g(r)

Attention ”false friend”! usually F [ρ] 6=
∫
vF [ρ](r) · ρ(r)dr
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What we will need for this lecture?
What is FDET about?

The functional EHK
v [ρ] for ρ 6= ρ0

v

min
ΨAB→ρAB

〈
ΨAB |ĤAB |ΨAB

〉
= EHK

vAB
[ρAB ] ≥ EHK

vAB
[ρ0

AB ] = E0
vAB

Notation: NAB - number of electrons (NAB = NA + NB ), vAB - external potential (vAB = vA + vB ).

Why to consider EHK
vAB

[ρAB ] for other densities than the ground-state density?

The EHK
vAB

[ρAB ] might have other stationary points than ρ0
AB

Perdew-Levy theorem on extrema of EHK
v [ρ]

Behaviour of EHK
vAB

[ρAB ] at ρAB ≈ ρ0
AB

response theory, reactivity indices, numerical algorithms:

Minimisation of EHK
vAB

[ρAB ] with additional constraints imposed on ρAB
Case of FDET: the constraint is ∀rρAB(r) ≥ ρB(r)
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What we will need for this lecture?
What is FDET about?

Why this constraint: ∀rρAB(r) ≥ ρB(r)?

Frequently, we know something about the total density and we would like to use thus
knowledge in setting up a numerical simulation:

ρAB ≈ ρunknownA + ρknownB

Core-valence separation:
ρknownB - density of core electrons, ρunknownA density of valence electrons

Multi-level/multi-scale simulations:
ρunknownA obtained from embedded NA electron wavefunction (ΨA with
NA < NAB) and ρB from experiment or from inexpensive methods.

We cannot assure, however, that there exists such ρA that

∀r

(
ρA(r) + ρknownB (r) = ρ0

vAB
(r)
)

the functional EHK
vAB

[ρAB ] must be considered for other than ground-state densities.
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What we will need for this lecture?
What is FDET about?

Frozen-Density Embedding Theory (FDET) concerns the constrained optimi-
sation of the Hohenberg-Kohn functional:

EnergyFDET = min
ρ(r)→NAB
∀rρ(r)≥ρB (r)

EHK
vAB

[ρ]

Note the difference with the second Hohenberg-Kohn theorem:

E0
vAB

= min
ρ(r)→NAB

EHK
vAB

[ρ]

EnergyFDET is thus the lowest possible energy (not necessarily E0
vAB

= EHK
vAB

[ρ0
AB ]) for

the total density constructed as ρAB = ρA + ρknownB .

Since good approximations for the explicit density functional (EHK
v [ρ] ≈ ẼHK

v [ρ]) do
not exist, the constrained optimisation problem must be formulated not for ρA but for
some auxiliary quantum mechanical descriptors for the embedded NA electrons.
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Variants of FDET

Approximations for numerical applications
ρB from various ”physics”

What we will need for this lecture?
What is FDET about?

Examples of relations between quantum mechanical descriptors (XAB) and EHK
vAB

[ρAB ]

for a system of NAB electrons in an external potential vAB(r)

XAB = ρAB (Orbital-free DFT):

min
ρAB→NAB

EHK
vAB

[ρAB ] = EHK
vAB

[ρ0
AB ] = E0

vAB

XAB = ΦKS
AB (Kohn-Sham DFT):

min
ΦKS
AB
→NAB

〈
ΦKS

AB |Ĥ
KS
AB |Φ

KS
AB

〉
= EHK

vAB
[ρ0

AB ] +

∫
ρ0
ABvxc [ρ0

AB ]dr − Exc [ρ0
AB ] +

1

2
J[ρ0

AB ]

XAB = ΨAB (Variational methods - interacting Hamiltonians):

min
ΨAB→NAB

〈
ΨAB |ĤAB |ΨAB

〉
= EHK

vAB
[ρ0

AB ]

XAB = ΦHF
AB,E

corr
vAB

(Non-variational methods - interacting Hamiltonians):

min
ΦHF
AB
→NAB

〈
ΦHF

AB |ĤAB |ΦHF
AB

〉
= EHK

vAB
[ρ0

AB ]− E corr
vAB
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What we will need for this lecture?
What is FDET about?

The basic equality enforced in the construction of the FDET energy functional

EnergyFDET (Xmin
A , ρB) = EHK

vAB
[ρ = ρ(Xmin

A ) + ρB ]

XA is a quantum mechanical descriptor (or descriptors) for NA < NAB electrons,
which is (are) available in multi-level level simulations (Kohn-Sham orbitals,
embedded wavefunction, correlation energy, density matrix, etc.). The
subsystem for which XA is used as a descriptor will be labelled as quantum
system.

ρB(~r) is a non-negative function such that
∫
ρB = NB = NAB − NA. The

subsystem for which ρB is used as a descriptor will be labelled environment.

The total density ρ(~r) is constructed in the bottom-up way using the available
quantum mechanical descriptor for NA electrons and a given ρB :

ρ = ρA(XA) + ρB
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What we will need for this lecture?
What is FDET about?

The descriptor XA, for which the basic energy equality of FDET holds, is obtained in
the constrained minimisation of EHK

vAB
[ρ]:

EnergyFDET (Xmin
A , ρB) =

NA−electron problem︷ ︸︸ ︷
min

XA→NA

EnergyFDET (XA, ρB) =

NAB−electron problem︷ ︸︸ ︷
min

ρ(r)→NAB
∀rρ(r)≥ρB (r)

EHK
vAB

[ρ]

Nothing is over- or undercounted: the basic FDET equality for energy

Any theory - classical or quantum - can be used to generate ρB

Optimal XA from the Euler-Lagrange equation

From now on, we consider some arbitrary splitting of the total external potential
(vAB = vA + vB) defining the Hamiltonian ĤA and the functional EHK

vB
[ρB ].
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Density functionals defined in constrained search
FDET for variational methods

The functionals in Kohn-Sham DFT defined implicitly [M. Levy, Proc. Natl. Acad. Sci. USA, 76 (1972) 6062]

min
Ψ̃−→ρ

〈
Ψ̃|T̂ + V̂ ee |Ψ̃

〉
=
〈

Ψ̃o [ρ]|T̂ + V̂ ee |Ψ̃o [ρ]
〉

= T [ρ] + Vee [ρ]←− variational principle

Ψ is N− representable

min
Ψ̃s−→ρ

〈
Ψ̃s |T̂ |Ψ̃s

〉
=
〈

Ψ̃o
s [ρ]|T̂ |Ψ̃o

s [ρ]
〉

= Ts [ρ]←− Kohn− Sham DFT (Levy)

Ψs is single− determinant : Ψs ≡ Φ

Exc [ρ] = Vee [ρ]−
1

2

∫ ∫
ρ(r)ρ(r′)

|r − r′|
dr′dr + T [ρ]− Ts [ρ]

Ec [ρ] ≡ T [ρ] + Vee [ρ]− min
Φ̃−→ρ

〈
Φ̃|T̂ + V̂ ee |Φ̃

〉

For FDET:

Enad
xcT

[
ρA, ρB

]
≡ Tnad

s

[
ρA, ρB

]
+ Enad

xc

[
ρA, ρB

]
where

Enad
xc

[
ρA, ρB

]
≡ Exc

[
ρA + ρB

]
− Exc

[
ρA
]
− Exc

[
ρB
]

Tnad
s

[
ρA, ρB

]
≡ Ts

[
ρA + ρB

]
− Ts

[
ρA
]
− Ts

[
ρB
]
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Density functionals defined in constrained search
FDET for variational methods

Case of variational embedded wavefunction and interacting Hamiltonian

Embedding a multi-determinantal wavefunction in orbital-free environment

[Wesolowski, Phys. Rev. A, 77 (2008) 012504]
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Density functionals defined in constrained search
FDET for variational methods

The total energy functional (Full CI form of ΨA)

EFDET
vAB

[ΨA, ρB ] = 〈ΨA|ĤA + v̂FDET
emb [ρA, ρB ; vB ]|ΨA〉 + Enad

xcT [ρA, ρB ]

−
∫ (

vnad
xcT [ρA, ρB ](r)

)
ρA(r)dr + EHK

vB
[ρB ] + VA[ρB ]

Ψo
A from Euler-Lagrange equation

δEFDET
vAB

[ΨA, ρB ]

δΨA

− λΨA = 0 −→
[
T̂NA

+ V̂ ee
NA

+ V̂A + v̂FDET
emb [ρA, ρB ; vB ]

]
ΨA=λΨA

with the multiplicative embedding operator (embedding potential)

v̂FDET
emb = vFDET

emb [ρA, ρB , vB ](r)

= vB (r) +

∫
ρB (r′)

|r′ − r|
d~r′ +

δEnad
xcT [ρ, ρB ]

δρ(r)

∣∣∣∣∣
ρ(r)=ρA(r)=〈ΨA|n̂|ΨA〉
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Density functionals defined in constrained search
FDET for variational methods

The total energy functional (Ψs ≡ ΦA ← single determinant form)

EFDET
vAB

[ΦA, ρB ] = 〈ΦA|ĤA + v̂FDET
emb [ρA, ρB ; vB ]|ΦA〉 + Enad

xcT [ρA, ρB ] + Ec [ρA]

−
∫ (

vnad
xcT [ρA, ρB ](r)+vc [ρA](r)

)
ρA(r)dr + EHK

vB
[ρB ] + VA[ρB ]

Φo
A from Euler-Lagrange equation

δEFDET
vAB

[ΦA, ρB ]

δΦA

− λΦA = 0 −→
[
T̂NA

+ V̂ ee
NA

+ V̂A + v̂FDET
emb [ρA, ρB ; vB ]

]
ΦA=λΦA

with the multiplicative embedding operator (embedding potential)

v̂FDET
emb = vFDET

emb [ρA, ρB , vB ](r)

= vB (r) +

∫
ρB (r′)

|r′ − r|
d~r′ +

δ
(
Enad
xcT [ρ, ρB ] + Ec [ρA]

)
δρ(r)

∣∣∣∣∣∣
ρ(r)=ρA(r)=〈ΦA|n̂|ΦA〉
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Density functionals defined in constrained search
FDET for variational methods

FDET for other descriptors obtained variationally

FDET for embedded reference non-interacting system: XA ≡ ΦKS
A

Wesolowski & Warshel J. Phys. Chem. 97, (1993) 8050

FDET for embedded one-matrix: XA ≡ γA
Pernal & Wesolowski, IJQC, 109 (2009) 2520
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Density functionals defined in constrained search
FDET for variational methods

Variational methods - Summary

The above variants of FDET provide thus the exact formulation of the embedding
problem for multiplicative embedding potentials.

The basic FDET equality:

min
XA→NA

E
FDET (XA)
vAB

[
XA, ρB

]
= E

FDET (XA)
vAB

[
X o
A , ρB

]
= EHK

vAB
[ρoA + ρB ]

is satisfied for any of the considered above descriptors if obtained from variational methods to solve the corresponding
FDET eigenvalue equation.

From the practical points of view:

↓ XA ≡ ΨFull Configuration Interaction
A - not practical,

↓ XA ≡ ΨTruncated Configuration Interaction
A - not used commonly,

↓ XA ≡ ΦSingle Determinant
A - requires approximations to Ec [ρ]

(not much success so far)

↑ XA ≡ ΦKS
A - quite successful used by us and others since introduction in 1993.
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Density functionals defined in constrained search
FDET for variational methods

Non-variational methods to solve FDET eigenvalue equation

On the correlation potential in frozen-density embedding theory

[Wesolowski, J. Chem. Theor. & Comput., 16 (2020) 6880]
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FDET eigenvalue equation:[
T̂NA

+ V̂ ee
NA

+ V̂A + v̂FDET
emb [ρA, ρB ; vB ]

]
ΨA = λΨA

The basic equality of FDET:

min
ΨA→NA

EFDET
vAB

[ΨA, ρB ] = EFDET
vAB

[Ψo
A, ρB ] = EHK

vAB
[ρ0

A + ρB ]

is satisfied only if ΨA (or any other descriptor) is obtained variationally AND for
self-consistent embedding potential.

Which ρA to use in vFDET
emb [ρA, ρB ; vB ] and how to use the obtained λ and ρA(r) =

〈ΨA|n̂|ΨA〉 in non-variational calcultions to obtain the energy consistent with the
Hohenberg-Kohn functional?

Several authors (Carter, Neugebauer, Höffener, and others) developed methods, in which various arbitrary

additional approximations are made in the FDET eigenvalue equation and non-variational methods to solve it. The

choices were motivated by numerical significance or ”intuition”.
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Density functionals defined in constrained search
FDET for variational methods

Theorem (the variant for single reference methods)
Wesolowski, J. Chem. Theor. & Comput., 16 (2020) 6880

EHK
vAB

[ρoA + ρB ] = EFDET
vAB

[Φ̃0
A, ρB ] + Ẽ c

v′ −
∫
ρ̃

0
A(r)

(∫
∆ρcv′ (r′)f nadxct [ρ̃0

A, ρB ](r, r′)dr′
)

dr

+ O(∆2
ρ)

where,

v ′(r) = vA(r) + vFDET
emb [ρ̃o

A, ρB ; vB ](r)

f nadxct [ρ, ρB ] (r, r′) =
δ2Enad

xct

[
ρ, ρB

]
δρ(r)δρ(r′)

and where ∆ρc
v′ (r) and Ẽ c

v′ is the correlation correction to density and to energy in the
auxiliary NA-electron system defined by a fixed external potential v ′(r).

The equality holds if the embedded determinant is obtained variationaly and at
self-consistent embedding potential!
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Theorem (the variant for multi-reference methods)
Wesolowski, J. Chem. Theor. & Comput., 16 (2020) 6880

EHK
vAB

[ρoA + ρB ] = EFDET
vAB

[Ψ̃MR0

A , ρB ] + Ẽ
c(dynamic)

v′

−
∫
ρ̃

0
A(r)

(∫
∆ρ

c(dynamic)

v′ (r′)f nadxct [ρ̃0
A, ρB ](r, r′)dr′

)
dr + O(∆2

ρ)

where,

v ′(r) = vA(r) + vFDET
emb [ρ̃o

A, ρB ; vB ](r)

f nadxct [ρ, ρB ] (r, r′) =
δ2Enad

xct

[
ρ, ρB

]
δρ(r)δρ(r′)

and where ∆ρ
c(dynamic)
v′ (r) and Ẽ

c(dynamic)
v′ is the ”dynamic” correlation correction to

density and to energy in the auxiliary NA-electron system defined by a fixed external
potential v ′(r).

The equality holds if the embedded multi-reference wavefunction is obtained
variationaly and at self-consistent embedding potential!
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Density functionals defined in constrained search
FDET for variational methods

Geneva:
A. Zech
C. Gonzalez-
Espinoza

Heidelberg:
A. Dreuw
S. Präger
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Upper bound of E0
vAB

from FDET
Excited states
Approximating the Tnad

s [ρA, ρB ] component of Enad
xct [ρA, ρB ]

N-representability of the target density in Frozen-Density Embedding Theory based
methods: Numerical significance and its relation to electronic polarisation

Ricardi, Gonzalez-Espinoza, & Wesolowski, J. Chem. Phys. 157 (2022) 064108
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Upper bound of E0
vAB

from FDET
Excited states
Approximating the Tnad

s [ρA, ρB ] component of Enad
xct [ρA, ρB ]

The basic FDET equality yields only the upper bound of E0
vAB

:

min
ΨA→NA

EFDET
vAB

[ΨA, ρB ] = EFDET
vAB

[Ψo
A, ρB ] =

Error due to the choice of ρB︷ ︸︸ ︷
EHK
vAB

[ρoA + ρB ] ≥ EHK
vAB

[ρoAB ] = Eo
v

Is ∆E = EHK
vAB

[ρoA + ρB ]− EHK
vAB

[ρoAB numerically significant if one takes as ρB the
density of isolated molecule B?

Numerical examples:

FDET-MP2 variant of FDET and Enad
xct [ρA, ρB ] ≈ Ẽ

nad(LDA)
xct [ρA, ρB ]

Ricardi, Gonzalez-Espinoza, & Wesolowski, J. Chem. Phys. 157 (2022) 064108
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Upper bound of E0
vAB

from FDET
Excited states
Approximating the Tnad

s [ρA, ρB ] component of Enad
xct [ρA, ρB ]
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Ricardi, Gonzalez-Espinoza, & Wesolowski, J. Chem. Phys. 157 (2022) 064108

FDET-MP2 Interaction energy Eint and the measure of non-negativity violation M for FDET calculations using

different ρB : ρ̃
opt
B

(light blue), ρ̃isolB (red) and polarised by electric field ρ̃
prepol
B

(dark blue). Horizontal lines are

reference MP2 interaction energies.
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Upper bound of E0
vAB

from FDET
Excited states
Approximating the Tnad

s [ρA, ρB ] component of Enad
xct [ρA, ρB ]

FDET for excited states

Non-interacting Hamiltonian: LR-TDDFT

T.A. Wesolowski, J. Am. Chem. Soc.,126 (2004) 11444
M.E. Casida, T.A. Wesolowski Intl. J.Quant. Chem. 2004, 96, 577

Interacting Hamiltonian: Levy-Perdew theorem on extrema of EHK
v [ρ]

T.A. Wesolowski, J. Chem. Phys., 140 (2014) 18A530
A. Zech, F. Aquilante, T.A. Wesolowski, J. Chem. Phys., 143 (2015) 164106
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Upper bound of E0
vAB

from FDET
Excited states
Approximating the Tnad

s [ρA, ρB ] component of Enad
xct [ρA, ρB ]

FDET eigenvalue equation might have more than just one stationary solution k > 0[
T̂NA

+ V̂ ee
NA

+ V̂A + v̂FDET
emb (Ψk

A)
]

Ψk
A = λkΨk

A

v̂FDET
emb (Ψk

A) = vFDET
emb [ρkA, ρB , vB ](r)

= vB(r) +

∫
ρB(r′)

|r′ − r|
d~r′ +

δEnad
xcT [ρ, ρB ]

δρ(r)

∣∣∣∣∣
ρ(r)=ρk

A
(r)=〈Ψk

A
|n̂|Ψk

A〉

Ψk
A for different k are obtained with different embedding potential. They might be

non-orthogonal. This undesired feature can be eliminated through the linearisation of
Enad
xcT [ρ, ρB ]:

Enad
xcT [ρ, ρB ] ≈ E

nad(lin)
xcT

[
ρ, ρrefA , ρB

]
= Enad

xcT

[
ρ0, ρB

]
+

∫
vnad
xcT

[
ρ0, ρB

] (
ρ− ρ0

)
dr

T.A. Wesolowski, J. Chem. Phys., 140 (2014) 18A530

A. Zech, F. Aquilante T.A. Wesolowski, J. Chem. Phys., 143 (2015) 164106

In ρA-linearised FDET: < ΨI
A|Ψ

J
A >= δIJ and E J − E I = λJ − λI !
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Chromophores
Environments

(H2O)n n=1,10
(NH3)n , n=1,4
mixed (H2O, NH3)
(HCOOH)n , n=1,2
(MeOH)n , n=1,3
formamide, formimidamide, guanidine,

acetamide, pyridine, HCOO−

Statistics: 351 electronic excitations

∆ε = ε
ADC(2)
complex

− εADC(2)
chromophore

δε = ε
FDET/ADC(2)
complex

− εADC(2)
complex

ME=39meV (0.9kcal/mol),
SD=43meV (1.0kcal/mol)

A. Zech, N. Ricardi, S. Prager, A. Dreuw & TAW., J. Chem. Theor. & Comput. 14 (2018) 4028
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Benchmarking vertical excitation energies

A. Zech, N. Ricardi, S. Prager, A. Dreuw & TAW., J. Chem. Theor. & Comput. 14 (2018) 4028
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Excitation energies of embedded chromophores from Frozen-Density Embedding
Theory using state-specific electron densities of the environment

M. Fu &T.A. Wesolowski, J. Phys. Chem. A., 127 (2023) 535
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∆Ej

Levy−PerdewTheorem︷︸︸︷
= E

vHK
AB

[ρ
j
A

+ ρ
j
B

]− E
vHK
AB

[ρoA + ρ
o
B ]

Fu&Wesolowski2022︷︸︸︷
= εj [ρ

ref
A , ρ

j
B
, ρ

o
B , vAB ] + O(∆2

ρ)

εj ≡

εAj︷ ︸︸ ︷
λj [ρ

ref
A , ρ

j
B

]− λo [ρrefA , ρ
j
B

]

+

εBj︷ ︸︸ ︷〈
Φ
′o(j)
A

∣∣∣ĤA + v̂FDET
emb [ρrefA , ρ

j
B

]
∣∣∣Φ
′o(j)
A

〉
−
〈

Φ
′o(o)
A

∣∣∣ĤA + v̂FDET
emb [ρrefA , ρ

o
B ]
∣∣∣Φ
′o(o)
A

〉
+ Ec

v
′ j − E c

v
′o

−

εCj︷ ︸︸ ︷(∫
ρ
ref
A (r)vnadxct [ρrefA , ρ

j
B

](r)dr −
∫
ρ
ref
A (r)vnadxct [ρrefA , ρ

o
B ](r)dr

)
+ Enad

xct [ρrefA , ρ
j
B

]− Enad
xct [ρrefA , ρ

o
B ]

+

εDj︷ ︸︸ ︷
EHK
vB

[ρ
j
B

]− EHK
vB

[ρoB ] +

εEj︷ ︸︸ ︷
VA[ρ

j
B

]− VA[ρoB ]

M. Fu &T.A. Wesolowski, J. Phys. Chem. A., 127 (2023) 535
QIF23  Lódz, Poland, June 21-24, 2023



Notation, terminology, statement of the problem
Variants of FDET

Approximations for numerical applications
ρB from various ”physics”

Upper bound of E0
vAB

from FDET
Excited states
Approximating the Tnad

s [ρA, ρB ] component of Enad
xct [ρA, ρB ]

State ρB -polarising field excitation energy
specificity avarage error (eV)
No none 0.0468±0.0414
No isolated chromophore

in ground state 0.0395±0.0322
Yes isolated chromophore 0.0384±0.0337

in the corresponding state
Yes embedded chromophore 0.0300±0.0258

in the corresponding state

In state specific case, Eq. 14 from Fu&Wesolowski, JPCA 2023 was
used for ∆EJ . In state-non-specific case ∆EJ = λJ − λ0.
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Improving upon local density approximation for vnad
t [ρA, ρB ]

Problem detected and reported:
Frozen Density Functional Approach for ab initio Calculations of Solvated
Molecules [Wesolowski & Warshel, J. Phys. Chem. 97, (1993) 8050]

Attempted solution:
Orbital-free effective embedding potential at nuclear cusps
[Lastra et al., J. Chem. Phys. 129 (2008) 074107]

Solution found for vnad
t [ρA, ρB ] but not for T nad

s [ρA, ρB ]:
A non-decomposable approximation on the complete density function space for
the non-additive kinetic potential [Polak et al., J. Chem. Phys. 156 (2022) 044103]

Solution found for vnad
t [ρA, ρB ] and T nad

s [ρA, ρB ]:
Symmetrized non-decomposable approximations of the non-additive kinetic
energy functional [Polak et al., J. Chem. Phys. 158 (2023) 17410]
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Statement of the problem

Let us consider two subsystems comprising NAB -electron system partitioned into NA

and NB consistently with the number of electrons upon separation of the two
subsystems.

ṽFDET
emb [ρA, ρB , vB ](~r) = vB(~r) +

∫
ρB(~r′)∣∣~r′ −~r)∣∣d~r′ + ṽnad

xct [ρA, ρB ](~r)

ṽFDET
emb [ρA, ρB , vB ](~r) has a singularity at each nucleus due to vB .

What if:
A The used approximation for vnad

xct [ρA, ρB ] is such that the singularity due to vB
remains negative and the total embedding potential has a bound state. and
B The energy of this bound state is lower that that of one of the occupied
orbitals obtained in the FDET eigenvalue equation.

Case B is in contradiction with our assumption that the partitioning NAB = NA + NB

correspond to the dissociation limit.
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Challenge for ṽnad
t [ρA, ρB ]

Case B is not hypothetical: both exact vnad
xc [ρA, ρB ] and Coulomb component of

vFDET
emb [ρA, ρB , vB ] are finite the nuclei. ṽ

nad(LDA)
t [ρA, ρB ] is also finite.

ṽFDET
emb [ρA, ρB , vB ](~r) = vB(~r) +

∫
ρB(~r′)∣∣~r′ −~r)∣∣d~r′ + vnad

xct [ρA, ρB ](~r)

Challenge for ṽnad
t [ρA, ρB ]:

It is the only component of vnad
xct [ρA, ρB ] that can stop such an artificial transfer of

electrons from A to B.

Remark:

In QM/MM practice this problem is usually pragmatically avoided by not using any

basis sets centered on atoms in the environment. A proper theory should yield

meaningful solutions for a complete basis set!
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Exact relation for the functional vnad
t [ρA, ρB ](r)

For
∫
ρB(r)dr = 2 and ρA(r)→ 0

vnad
t [ρA, ρB ](r) −→ v

nad(limit)
t [ρB ](r) = −

1

4

∇2ρB

ρB(r)
+

1

8

|∇ρB |2

ρ2
B(r)

Lastra et al., J. Chem. Phys. 129 (2008) 074107

This property of vnad
t [ρA, ρB ](r) cannot be reproduced by any decomposable

approximation based on gradient-expansion approximation! But it is highly desirable.

v
nad(limit)
t [ρexpB ](r) = − 1

4
∇2ρB
ρB (r)

+ 1
8
|∇ρB |2

ρ2
B

(r)
=

constant︷ ︸︸ ︷
−
ζ2

2
+

repulsive︷︸︸︷
ζ

r
if ρexpB (r) = A exp(−2ζr)
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Our first attempt: NDSD approximation

ṽ
nad(NDSD)
t [ρA, ρB ] = v

nad(LDA)
t [ρA, ρB ] + f NDSD(ρB)v limit

t [ρB ]

with v
nad(TF)
t [ρA, ρB ] = 5

3
CTF

(
(ρA + ρB )2/3 − ρ2/3

A

)

v
nad(limit)
t [ρ

exp
B

](r) =

differential operator︷ ︸︸ ︷
−

1

4

∇2ρB

ρB (r)
+

1

8

|∇ρB |2

ρ2
B

(r)

=

undesired︷ ︸︸ ︷
−
ζ2

2
+

desired︷︸︸︷
ζ

r
if ρ

exp
B

(r) = A exp(−2ζr)

[Lastra et al., J. Chem. Phys. 129 (2008) 074107]
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The follow up: Part I

The differential operator
Dγ [ρ] = |∇ρ|2 − γρ∇2ρ

corresponds to v
nad(limit)
t [ρexpB ] if γ = 2.

The analysis of spaces solving the homogeneous differential equation
Dγ=2[ρ] = 0 involves functions which cannot be electron densities.
Only if γ = 1, the solutions of Dγ [ρ] = 0 are exponential densities,
i.e. the functions covering completely the space of molecular electron
densities.

NEW non-decomposable approximation:

ṽ
nad(NDCS)
t [ρA, ρB ] = v

nad(TF)
t [ρA, ρB ] +

does not contain the undesired constant!︷ ︸︸ ︷
f NDCS(ρB) · Dγ=1[ρB ]

Polak et al., J. Chem. Phys. 156 044103 (2022)
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Differences between subsystem DFT density and the reference Kohn-Sham density

‖(ρA + ρB − ρref )1/2‖2 =

∫ (
|(ρA + ρB − ρref )

1
2 |2 + |∇(ρA + ρB − ρref )

1
2 |2
)

optimisation of ρA and ρB with various ṽnadt [ρA, ρB ]

A B TF GEA2 NDSD NDCS ‖(ρisolA + ρisolB − ρref )1/2‖2

Li+ H2O 0.0620 0.1227 0.0508 0.0447 0.3675

Be2+ H2O 0.5149 0.7295 0.3951 0.2422 1.0457

Na+ H2O 0.0200 0.0711 0.0174 0.0168 0.2879

Mg2+ H2O 0.0942 0.2487 0.0695 0.0489 0.7177

K+ H2O 0.0678 – – 0.0322 0.2418

Rb+ H2O 0.4949 0.5185 0.5461 0.4906 0.6546

Li+ CO2 0.0316 0.0797 0.0273 0.0270 0.4544

K+ CO2 0.0197 0.0630 – 0.0173 0.2926

Li+ F2 0.0279 0.0463 0.0222 0.0205 0.3031

TFand GEA2 denote the approximation for Ts [ρ] used in decomposable approximations for vnadt [ρA, ρB ];
NDSD and NDCS are not decomposable.

Polak et al., J. Chem. Phys. 156 044103 (2022)
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Differences between subsystem DFT density and the reference Kohn-Sham density

‖(ρA + ρB − ρref )1/2‖2 =

∫ (
|(ρA + ρB − ρref )

1
2 |2 + |∇(ρA + ρB − ρref )

1
2 |2
)

optimisation of ρA and ρB with various ṽnadt [ρA, ρB ]

A B TF GEA2 NDSD NDCS ‖(ρisolA + ρisolB − ρref )1/2‖2

H2O H2O 0.0210 0.0311 0.0209 0.0224 0.0914

Li+ F− 0.2044 0.2839 0.1670 0.1465 0.4440

Li+ Cl− 0.2623 0.3788 0.2148 0.1843 0.6088

Li+ Br− 0.2969 0.4300 0.2440 0.2075 0.6736

Na+ F− 0.0691 0.1583 0.0578 0.0479 0.3592

Na+ Cl− 0.0619 0.1893 0.0505 0.0416 0.5231

Na+ Br− 0.0615 0.2071 0.0490 0.0404 0.5926

Be2+ O2− 1.1169 1.2709 0.9723 0.8114 2.1072

Mg2+ O2− 0.2988 0.5172 0.2205 0.1531 2.1176

HF HF 0.0537 0.0441 0.0539 0.0591 0.1504

K+ Cl− –2 –2 –2 0.1969 0.4279

K+ F− –2 –2 –2 0.1929 0.4916

Polak et al., J. Chem. Phys. 156 044103 (2022)
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Decomposable ṽnad
t [ρA, ρB ] yield symmetric T̃ nad

s [ρA, ρB ].

T̃
nad(NDCS)
s [ρA, ρB ] corresponding to v

nad(NDCS)
t [ρA, ρB ] might not be symmetric.

And it is!

Complex Interaction energies from subsystem DFT

A B ẼNDCS
int [ρA, ρB ] ẼNDCS

int [ρB , ρA] EKS
int

Li+ H2O -39.82 -37.90 -37.48
Li+ CO2 -21.87 -20.72 -21.47
Li+ F− -194.80 -188.32 -187.56
Li+ Cl− -162.07 -157.22 -153.57
Li+ OH− -195.79 -189.80 -191.69
K+ F− -131.51 -140.90 -141.83
K+ Cl− -112.80 -119.64 -116.62
K+ OH− -138.21 -140.80 -142.08
Mg2+ O2− -696.66 -670.52 -666.35
Mg2+ H2O -87.24 -83.96 -85.21
Be2+ O2− -947.31 -883.99 -857.56
Be2+ H2O -176.28 -153.96 -149.97

Polak et al., J. Chem. Phys. 158 (2023) 17410
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Symmetrisation of T̃
nad(NDCS)
s [ρA, ρB ]

Straightforward solution:

T̃
nad(NDCSsym)
s [ρA, ρB ] = T̃

nad(NDCS)
s [ρA, ρB ] +

1

2
T̃

nad(NDCSasym)
s [ρA, ρB ]

with

T̃
nad(NDCSasym)
s [ρA, ρB ] = T̃

nad(NDCS)
s [ρA, ρB ]− T̃

nad(NDCS)
s [ρB , ρA]

But this would mean modification of the potential:

ṽ
nad(NDCSsym)
t [ρA, ρB ] = ṽ

nad(NDCS)
t [ρA, ρB ] +

δT̃
nad(NDCS)
s [ρB , ρA]

δρA

Our solution [Polak et al., J. Chem. Phys. 158 (2023) 17410]

T̃
nad(NDCSsym)
s [ρA, ρB ] = T̃

nad(NDCS)
s [ρA, ρB ] + C sym

∫
ρA
δT̃

nad(NDCS)
s [ρB , ρA]

δρA
dr

and choosing the constant C sym to yield the first-order correction to

v
nad(NDCS)
s [ρA, ρB ] making the whole functional symmetric.
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Interaction energies from subsystem DFT [kcal/mol]

Complex TF sym-NDCS KS

Li+ H2O -40.66 -39.02 -37.48
(8.48) (4.11)

Li+ CO2 -22.41 -21.39 -21.47
(4.37) (0.37)

Li+ F− -196.75 -192.04 -187.56
(4.90) (2.39)

Li+ Cl− -164.08 -160.05 -153.57
(6.84) (4.22)

Li+ OH− -197.09 -193.20 -191.69
(2.82) (0.79)

K+ F− . . . -136.94 -141.83
(3.45)

K+ Cl− . . . -116.77 -116.62
(0.13)

K+ OH− . . . -139.80 -142.08
(1.61)

Mg2+ O2− -691.91 -684.44 -666.35
(3.84) (2.71)

Mg2+ H2O -89.21 -85.94 -85.21
(4.69) (0.85)

Be2+ O2− -954.86 -920.58 -857.86
(11.31) (7.31)

Be2+ H2O -186.51 -167.41 -149.97
(24.36) (11.63)
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Combining physical laws for different scales in FDET

continuum at scale of Å︷ ︸︸ ︷
< ρB >statistical ensemble(r) =

atomtype∑
i

∫
Pi (r′)ρi (r − r′)dr′

Kaminski et al. J. Phys. Chem. A 114 (2010) 6082
Zhou et al. Phys. Chem. Chem. Phys.13 (2011) 10565
Shedge et al. Chem. Phys. Chem. 15 (2014) 3291

 P from 3D-RISM

Lyaktonov et al. Phys. Chem. Chem. Phys.(2016) 18 21069
Gonzalez-Espinoza et al. J. Chem. Theor. & Comput.18 (2022) 1072
Ricardi et al. J. Chem. Theor. & Comput. (2023) in press

 P from classical MD

Gonzalez-Espinoza et al. to be published
}

P from MolecularDFT

Ricardi et al. Acta Cryst. - Foundation and Advances A76 57(2020)
}

P from X-ray diffraction
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   Multi-level simulations based on Frozen Density Embedding Theory 
FDET for excitation energies of embedded chromophores!

Solvatochromism 
Implicit treatment of the solvent in FDET 

(embedding potential evaluated at averaged solvent density <ρB> 

Solvent Dielectric 
constant 

Solvatochromic 
shift (FDET) [eV] 

Solvatochromic 
shift (Exp) [eV] 

Water  78 -0.29 -0.27 

Methanol  33 -0.24 -0.24 

Ethanol  25 -0.21 -0.24 

1-propanol 20 -0.20 -0.23 

2-propanol  20 -0.18 -0.23 

Dimethyl 
ether 

4 -0.11 -0.10 

Cyclohexane  2 0.00 0.00 

π->π* transition in coumarin 153 
[X. Zhou, J. Kaminski, Wesolowski, Phys.Chem.Chem.Phys., 13 (2011) 10565] 

[Kaminski, Gusarov, Wesolowski, Kovalenko, J. Phys. Chem A, 114 (2010) 6082] 
<ρB

elect>+<ρB
nuc> embedding potential 
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[C.E. Gonzalez-Espinoza, C. Rumble, D. Borgis, and T.A.

Wesolowski, J. Chem. Theor. & Comput. 18 (2022)

1072]
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Aminocoumarin 153 in water

< ρB > (MD) < ρB > (MolDFT)
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Aminocoumarin 153 in water

Total solvent charge (MD) Total solvent charge (MolDFT)
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Performance of < ρB >
MDFT in FDET

Table: Vertical excitation energies shifts (in eV) for acetone and C153.
Excitation energies of the chromophores in vacuum are 4.270 eV
(acetone) and 3.135 eV (coumarin C153).

Acetone C153
Source of 〈ρB〉ens Water ACN Water ACN

MDFT 0.239 0.099 -0.250 -0.120
MD 0.230 0.118 -0.202 -0.097

Gonzalez-Espinoza, Rumble, Borgis, Wesolowski, to be publisjed
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< ρB > from molecular crystals

Embedding-theory-based simulations using experimental electron densities for the
environment

[N. Ricardi, M. Ernst, P. Macchi, and T. A. Wesolowski, Acta Crystallographica -
Foundation and Advances A76 57 (2020)]
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FDET with ρB taken from molecular crystal of glycylglycine

Complexation effect on vertical excitation energies:

”Embedded ADC(2)” vs ADC(2) for with various

choices for ρB(~r)

Ricardi et al. Acta Crystallographica - Foundation and Advances A76 57 (2020)
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The Team and Collaborators

Collaborations: A. Dreuw (Heidelberg), I. Schapiro (Tel

Aviv), D. Borgis (Paris), C. Rumble (Philadelphia), P.

Macchi (Milan), M. Kowalska (UniGe-phys/CERN), M.

Gander (UniGe-math)

The Team

Dr. Cristina Elisabeth Gonzalez Espinoza
approximations, multi-scale methods, code
development and integration

Dr. Alexander Zech
linearized FDET, code development

Mr. Elias Polak
NDCS

Ms. Mingxue Fu
TPA,state specific ρB

Dr. Nicolo Ricardi
electronic excitations, experimental ρB

Mr. Yann Gimbal-Zofka
EFG,polarisation of ρB

Mr. Tanguy Englert
NDCS

www.unige.ch/sciences/chifi/wesolowski/
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