Constrained minimisation of the Hohenberg-Kohn energy functional:

challenge for theory and opportunities for multi-scale simulations

Tomasz A. Wesolowski, Université de Genève, Switzerland www.unige.ch/sciences/chifi/wesolowski/

June 21, 2023

Lecture on Frozen-Density Embedding Theory (FDET) at QIF23

Notation, terminology, statement of the problem

- What we will need for this lecture?
- What is FDET about?

Variants of FDET

- Density functionals defined in constrained search
- FDET for variational embedded wavefunction and interacting Hamiltonian

• Ψ_A of a Full Configuration Interaction form

 ${\ensuremath{\bullet}}\ \Psi_{A}$ of a single determinant form

Approximations for numerical applications

- Upper bound of E⁰_{VAB} from FDET
- Excited states
 - State-independent ρ_B
 - State-specific ρ_B
- Approximating the $T_s^{nad}[\rho_A, \rho_B]$ component of $E_{xct}^{nad}[\rho_A, \rho_B]$

What we will need for this lecture? What is FDET about?

• Variational principle in QM:

$$\min_{\Psi \to N} \left\langle \Psi | \hat{H}_{\nu} | \Psi \right\rangle = \left\langle \Psi^{0} | \hat{H} | \Psi^{0} \right\rangle = E_{\nu}^{0}$$

• Perturbation theory (first order):

For two N-electron Hamiltonians $(\hat{H}' \text{ and } \hat{H})$ with Ψ^0 being the ground-state wavefunction for \hat{H} :

$$\begin{split} E'^{0} - E^{0} &= \left\langle \Psi^{0} | \hat{H}' - \hat{H} | \Psi^{0} \right\rangle + \text{higher orders} \\ E'^{0} - E^{0} &= \int \rho^{\circ}(\mathbf{r}) \left(v'(\mathbf{r}) - v(\mathbf{r}) \right) d\mathbf{r} + \text{higher orders} \longleftarrow \text{ if } \hat{H}' - \hat{H} \text{ is a potential} \end{split}$$

• Density Functional Theory:

$$\min_{\Psi \to \rho} \left\langle \Psi | \hat{H}_{\nu} | \Psi \right\rangle = E_{\nu}^{HK}[\rho] \quad \longleftarrow \text{ The Hohenberg-Kohn density functional}$$
$$\min_{\rho \to N} E_{\nu}^{HK}[\rho] = E_{\nu}^{HK}[\rho^{0}] = E_{\nu}^{0} \quad \longleftarrow \text{ The second Hohenberg-Kohn theorem}$$

What we will need for this lecture? What is FDET about?

Functional derivative of a functional $F[\rho]$

$$v_{F}[\rho](\mathbf{r}) \equiv \frac{\delta F[\rho]}{\delta \rho(\mathbf{r})} = \lim_{h \to 0} \frac{F[\rho + h \cdot g(\mathbf{r})] - F[\rho]}{h}$$

for any admissible function $g(\mathbf{r})$

Attention "false friend"! usually $F[\rho] \neq \int v_F[\rho](\mathbf{r}) \cdot \rho(\mathbf{r}) d\mathbf{r}$

What we will need for this lecture? What is FDET about?

The functional $E_v^{HK}[\rho]$ for $\rho \neq \rho_v^0$

$$\min_{\Psi_{AB}\to\rho_{AB}}\left\langle \Psi_{AB}|\hat{H}_{AB}|\Psi_{AB}\right\rangle = E_{\nu_{AB}}^{HK}[\rho_{AB}] \geq E_{\nu_{AB}}^{HK}[\rho_{AB}^{0}] = E_{\nu_{AB}}^{0}$$

Notation: N_{AB} - number of electrons ($N_{AB} = N_A + N_B$), v_{AB} - external potential ($v_{AB} = v_A + v_B$).

Why to consider $E_{v_{AB}}^{HK}[\rho_{AB}]$ for other densities than the ground-state density?

- The E^{HK}_{νAB}[ρ_{AB}] might have other stationary points than ρ⁰_{AB} Perdew-Levy theorem on extrema of E^{HK}_ν[ρ]
- Behaviour of E^{HK}_{νAB}[ρ_{AB}] at ρ_{AB} ≈ ρ⁰_{AB} response theory, reactivity indices, numerical algorithms:
- Minimisation of $E_{v_{AB}}^{HK}[\rho_{AB}]$ with additional constraints imposed on ρ_{AB} Case of FDET: the constraint is $\forall_{\mathbf{r}}\rho_{AB}(\mathbf{r}) \ge \rho_B(\mathbf{r})$

What we will need for this lecture? What is FDET about?

Why this constraint: $\forall_{\mathbf{r}} \rho_{AB}(\mathbf{r}) \geq \rho_{B}(\mathbf{r})$?

Frequently, we know something about the total density and we would like to use thus knowledge in setting up a numerical simulation:

 $\rho_{AB} \approx \rho_A^{\textit{unknown}} + \rho_B^{\textit{known}}$

• Core-valence separation: ρ_B^{known} - density of core electrons, $\rho_A^{unknown}$ density of valence electrons

• Multi-level/multi-scale simulations: $\rho_A^{unknown}$ obtained from embedded N_A electron wavefunction (Ψ_A with $N_A < N_{AB}$) and ρ_B from experiment or from inexpensive methods.

We cannot assure, however, that there exists such ρ_A that

$$\forall_{\mathbf{r}} \left(\rho_A(\mathbf{r}) + \rho_B^{known}(\mathbf{r}) = \rho_{v_{AB}}^0(\mathbf{r}) \right)$$

the functional $E_{v_{AB}}^{HK}[\rho_{AB}]$ must be considered for other than ground-state densities.

What we will need for this lecture? What is FDET about?

Note the difference with the second Hohenberg-Kohn theorem:

$$E_{v_{AB}}^{0} = \min_{
ho(\mathbf{r})
ightarrow N_{AB}} E_{v_{AB}}^{HK}[
ho]$$

Energy^{FDET} is thus the **lowest possible energy** (not necessarily $E_{v_{AB}}^0 = E_{v_{AB}}^{HK}[\rho_{AB}^0]$) for the total density constructed as $\rho_{AB} = \rho_A + \rho_B^{known}$.

Since good approximations for the explicit density functional $(E_v^{HK}[\rho] \approx \tilde{E}_v^{HK}[\rho])$ do not exist, the constrained optimisation problem must be formulated not for ρ_A but for some auxiliary quantum mechanical descriptors for the embedded N_A electrons.

What we will need for this lecture? What is FDET about?

Examples of relations between quantum mechanical descriptors (X_{AB}) and $E_{v_{AB}}^{HK}[\rho_{AB}]$

for a system of N_{AB} electrons in an external potential $v_{AB}(\mathbf{r})$

• $X_{AB} = \rho_{AB}$ (Orbital-free DFT):

$$\min_{\rho_{AB}\to N_{AB}} E_{\nu_{AB}}^{HK}[\rho_{AB}] = E_{\nu_{AB}}^{HK}[\rho_{AB}^0] = E_{\nu_{AB}}^0$$

•
$$X_{AB} = \Phi_{AB}^{KS}$$
 (Kohn-Sham DFT):

$$\min_{\Phi_{AB}^{KS} \to N_{AB}} \left\langle \Phi_{AB}^{KS} | \hat{H}_{AB}^{KS} | \Phi_{AB}^{KS} \right\rangle = E_{v_{AB}}^{HK} [\rho_{AB}^0] + \int \rho_{AB}^0 v_{xc} [\rho_{AB}^0] d\mathbf{r} - E_{xc} [\rho_{AB}^0] + \frac{1}{2} J[\rho_{AB}^0]$$

• $X_{AB} = \Psi_{AB}$ (Variational methods - interacting Hamiltonians):

$$\min_{\Psi_{AB}\to N_{AB}} \left\langle \Psi_{AB} | \hat{H}_{AB} | \Psi_{AB} \right\rangle = E_{v_{AB}}^{HK} [\rho_{AB}^{0}]$$

• $X_{AB} = \Phi_{AB}^{HF}$, $E_{v_{AB}}^{corr}$ (Non-variational methods - interacting Hamiltonians):

$$\min_{\Phi_{AB}^{HF} \to N_{AB}} \left\langle \Phi_{AB}^{HF} | \hat{H}_{AB} | \Phi_{AB}^{HF} \right\rangle = E_{v_{AB}}^{HK} [\rho_{AB}^{0}] - E_{v_{AB}}^{corr}$$

What we will need for this lecture? What is FDET about?

The basic equality enforced in the construction of the FDET energy functional

 $\operatorname{Energy}^{FDET}(X_A^{\min}, \rho_B) = E_{v_{AB}}^{HK}[\rho = \rho(X_A^{\min}) + \rho_B]$

- X_A is a quantum mechanical descriptor (or descriptors) for $N_A < N_{AB}$ electrons, which is (are) available in multi-level level simulations (Kohn-Sham orbitals, embedded wavefunction, correlation energy, density matrix, etc.). The subsystem for which X_A is used as a descriptor will be labelled as **quantum** system.
- ρ_B(r
 i) is a non-negative function such that ∫ ρ_B = N_B = N_{AB} N_A. The
 subsystem for which ρ_B is used as a descriptor will be labelled environment.
- The total density $\rho(\vec{r})$ is constructed in the **bottom-up** way using the available quantum mechanical descriptor for N_A electrons and a given ρ_B :

$$\rho = \rho_A(X_A) + \rho_B$$

The descriptor X_A , for which the basic energy equality of FDET holds, is obtained in the constrained minimisation of $E_{VAR}^{HK}[\rho]$:

$$\operatorname{Energy}^{FDET}(X_{A}^{min},\rho_{B}) = \underbrace{\min_{X_{A} \to N_{A}} \operatorname{Energy}^{FDET}(X_{A},\rho_{B})}_{X_{A} \to N_{A}} = \underbrace{\min_{\rho(r) \to N_{AB}}}_{\substack{\rho(r) \to N_{AB} \\ \forall_{r}\rho(r) \ge \rho_{B}(r)}} E_{\nu_{AB}}^{HK}[\rho]$$

- Nothing is over- or undercounted: the basic FDET equality for energy
- Any theory classical or quantum can be used to generate ρ_B
- Optimal X_A from the Euler-Lagrange equation

From now on, we consider some arbitrary splitting of the total external potential $(v_{AB} = v_A + v_B)$ defining the Hamiltonian \hat{H}_A and the functional $E_{v_B}^{HK}[\rho_B]$.

Density functionals defined in constrained search FDET for variational methods

The functionals in Kohn-Sham DFT defined implicitly [M. Levy, Proc. Natl. Acad. Sci. USA, 76 (1972) 6062]

$$\min_{\tilde{\Psi} \longrightarrow \rho} \left\langle \tilde{\Psi} | \hat{T} + \hat{V}^{ee} | \tilde{\Psi} \right\rangle = \left\langle \tilde{\Psi}^{o}[\rho] | \hat{T} + \hat{V}^{ee} | \tilde{\Psi}^{o}[\rho] \right\rangle = T[\rho] + V_{ee}[\rho] \longleftarrow \text{ variational principle}$$
$$\Psi \text{ is } N - \text{representable}$$

$$\min_{\tilde{\Psi}_{g} \longrightarrow \rho} \left\langle \tilde{\Psi}_{g} | \hat{T} | \tilde{\Psi}_{g} \right\rangle = \left\langle \tilde{\Psi}_{g}^{o}[\rho] | \hat{T} | \tilde{\Psi}_{g}^{o}[\rho] \right\rangle = T_{g}[\rho] \longleftarrow \text{Kohn} - \text{Sham DFT (Levy)}$$

$$\Psi_s$$
 is single – determinant : $\Psi_s \equiv \Phi$

NSIS

$$E_{xc}[\rho] = V_{ee}[\rho] - \frac{1}{2} \int \int \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' d\mathbf{r} + T[\rho] - T_s[\rho]$$

$$\mathsf{E}_{c}[\rho] \equiv \mathsf{T}[\rho] + \mathsf{V}_{ee}[\rho] - \min_{\tilde{\Phi} \longrightarrow \rho} \left\langle \tilde{\Phi} | \hat{T} + \hat{V}^{ee} | \tilde{\Phi} \right\rangle$$

For FDET:

where

$$T_{s}^{nad}\left[\rho_{A},\rho_{B}\right] \equiv T_{s}\left[\rho_{A}+\rho_{B}\right] - T_{s}\left[\rho_{A}\right] - T_{s}\left[\rho_{B}\right]$$

QIF23 Łódz, Poland, June 21-24, 2023

Density functionals defined in constrained search FDET for variational methods

Case of variational embedded wavefunction and interacting Hamiltonian

Embedding a multi-determinantal wavefunction in orbital-free environment

[Wesolowski, Phys. Rev. A, 77 (2008) 012504]

Density functionals defined in constrained search FDET for variational methods

The total energy functional (Full CI form of Ψ_A)

$$\begin{split} E^{\text{FDET}}_{v_{AB}}[\Psi_{A},\rho_{B}] &= \langle \Psi_{A} | \hat{H}_{A} + \hat{v}^{\text{FDET}}_{emb}[\rho_{A},\rho_{B};v_{B}] | \Psi_{A} \rangle + E^{\text{nad}}_{xcT}[\rho_{A},\rho_{B}] \\ &- \int \left(v^{\text{nad}}_{xcT}[\rho_{A},\rho_{B}](\mathbf{r}) \right) \rho_{A}(\mathbf{r}) d\mathbf{r} + E^{HK}_{v_{B}}[\rho_{B}] + V_{A}[\rho_{B}] \end{split}$$

Ψ_A^o from Euler-Lagrange equation

$$\frac{\delta E_{V_{AB}}^{F_{DET}}[\Psi_{A},\rho_{B}]}{\delta \Psi_{A}} - \lambda \Psi_{A} = 0 \quad \longrightarrow \left[\hat{T}_{N_{A}} + \hat{V}_{N_{A}}^{ee} + \hat{V}_{A} + \hat{v}_{emb}^{FDET}[\rho_{A},\rho_{B};v_{B}]\right] \Psi_{A} = \lambda \Psi_{A}$$

with the multiplicative embedding operator (embedding potential)

$$\begin{aligned} \hat{v}_{emb}^{FDET} &= v_{emb}^{FDET}[\rho_A, \rho_B, v_B](\mathbf{r}) \\ &= v_B(\mathbf{r}) + \int \left. \frac{\rho_B(\mathbf{r}')}{|\mathbf{r}' - \mathbf{r}|} d\mathbf{\bar{r}}' + \left. \frac{\delta E_{xcT}^{nad}[\rho, \rho_B]}{\delta \rho(\mathbf{r})} \right|_{\rho(\mathbf{r}) = \rho_A(\mathbf{r}) = \langle \Psi_A | \hat{n} | \Psi_A \rangle } \end{aligned}$$

Density functionals defined in constrained search FDET for variational methods

The total energy functional ($\Psi_s \equiv \Phi_A \leftarrow \text{single determinant form}$)

$$\begin{split} E^{\text{FDET}}_{v_{AB}}[\Phi_{A},\rho_{B}] &= \langle \Phi_{A}|\hat{H}_{A} + v^{\text{FDET}}_{emb}[\rho_{A},\rho_{B};v_{B}]|\Phi_{A}\rangle + E^{\text{nad}}_{xcT}[\rho_{A},\rho_{B}] + E_{c}[\rho_{A}] \\ &- \int \left(v^{\text{nad}}_{xcT}[\rho_{A},\rho_{B}](\mathbf{r}) + v_{c}[\rho_{A}](\mathbf{r})\right)\rho_{A}(\mathbf{r})d\mathbf{r} + E^{HK}_{v_{B}}[\rho_{B}] + V_{A}[\rho_{B}] \end{split}$$

 Φ_A^o from Euler-Lagrange equation

$$\frac{\delta E_{V_{AB}}^{FDET}[\phi_{A}, \rho_{B}]}{\delta \Phi_{A}} - \lambda \Phi_{A} = 0 \quad \longrightarrow \left[\hat{T}_{N_{A}} + \hat{V}_{N_{A}}^{ee} + \hat{V}_{A} + \hat{v}_{emb}^{FDET}[\rho_{A}, \rho_{B}; v_{B}]\right] \Phi_{A} = \lambda \Phi_{A}$$

with the multiplicative embedding operator (embedding potential)

$$\begin{aligned} \hat{v}_{emb}^{FDET} &= v_{emb}^{FDET}[\rho_A, \rho_B, v_B](\mathbf{r}) \\ &= v_B(\mathbf{r}) + \int \frac{\rho_B(\mathbf{r}')}{|\mathbf{r}' - \mathbf{r}|} d\mathbf{\bar{r}}' + \frac{\delta \left(E_{xcT}^{nad}[\rho, \rho_B] + E_c[\rho_A] \right)}{\delta \rho(\mathbf{r})} \bigg|_{\rho(\mathbf{r}) = \rho_A(\mathbf{r}) = \langle \Phi_A | \hat{n} | \Phi_A \rangle} \end{aligned}$$

Density functionals defined in constrained search FDET for variational methods

FDET for other descriptors obtained variationally

- FDET for embedded reference non-interacting system: $X_A \equiv \Phi_A^{KS}$ Wesolowski & Warshel J. Phys. Chem. 97, (1993) 8050
- FDET for embedded one-matrix: $X_A \equiv \gamma_A$ Pernal & Wesolowski, *IJQC*, **109** (2009) 2520

Density functionals defined in constrained search FDET for variational methods

Variational methods - Summary

The above variants of FDET provide thus the exact formulation of the embedding problem for multiplicative embedding potentials.

The basic FDET equality:

$$\min_{X_A \to N_A} E_{v_{AB}}^{FDET(X_A)} \left[X_A, \rho_B \right] = E_{v_{AB}}^{FDET(X_A)} \left[X_A^o, \rho_B \right] = E_{v_{AB}}^{HK} \left[\rho_A^o + \rho_B \right]$$

is satisfied for any of the considered above descriptors **if obtained from variational methods** to solve the corresponding FDET eigenvalue equation.

From the practical points of view:

- $\begin{array}{l} \downarrow \quad X_A \equiv \Psi_A^{\rm Full \ Configuration \ Interaction} \ \text{- not practical,} \\ \downarrow \quad X_A \equiv \Psi_A^{\rm Truncated \ Configuration \ Interaction} \ \text{- not used commonly,} \\ \downarrow \quad X_A \equiv \Phi_A^{\rm Single \ Determinant} \ \text{- requires approximations to } E_c[\rho] \end{array}$
- (not much success so far)
- $\uparrow~X_A \equiv \Phi_A^{\rm KS}$ quite successful used by us and others since introduction in 1993.

Density functionals defined in constrained search FDET for variational methods

Non-variational methods to solve FDET eigenvalue equation

On the correlation potential in frozen-density embedding theory

[Wesolowski, J. Chem. Theor. & Comput., 16 (2020) 6880]

Density functionals defined in constrained search FDET for variational methods

FDET eigenvalue equation:

$$\left[\hat{T}_{N_{A}} + \hat{V}_{N_{A}}^{ee} + \hat{V}_{A} + \hat{v}_{emb}^{FDET}[\rho_{A}, \rho_{B}; v_{B}]\right]\Psi_{A} = \lambda\Psi_{A}$$

The basic equality of FDET:

$$\min_{\Psi_A \to N_A} E_{\nu_{AB}}^{FDET} [\Psi_A, \rho_B] = E_{\nu_{AB}}^{FDET} [\Psi_A^o, \rho_B] = E_{\nu_{AB}}^{HK} [\rho_A^0 + \rho_B]$$

is satisfied only if Ψ_A (or any other descriptor) is obtained variationally AND for self-consistent embedding potential.

Which ρ_A to use in $v_{emb}^{FDET}[\rho_A, \rho_B; v_B]$ and how to use the obtained λ and $\rho_A(\mathbf{r}) = \langle \Psi_A | \hat{n} | \Psi_A \rangle$ in non-variational calcultions to obtain the energy consistent with the Hohenberg-Kohn functional?

Several authors (Carter, Neugebauer, Höffener, and others) developed methods, in which various arbitrary additional approximations are made in the FDET eigenvalue equation and non-variational methods to solve it. The choices were motivated by numerical significance or "intuition".

Density functionals defined in constrained search FDET for variational methods

Theorem (the variant for single reference methods) Wesolowski, J. Chem. Theor. & Comput., **16** (2020) 6880

$$E_{\boldsymbol{v}_{AB}}^{HK}[\rho_{A}^{o}+\rho_{B}] = E_{\boldsymbol{v}_{AB}}^{FDET}[\bar{\Phi}_{A}^{0},\rho_{B}] + \bar{E}_{\boldsymbol{v}'}^{c} - \int \bar{\rho}_{A}^{0}(t) \left(\int \Delta \rho_{\boldsymbol{v}'}^{c}(\mathbf{r}') f_{\text{xct}}^{nad}[\bar{\rho}_{A}^{0},\rho_{B}](\mathbf{r},\mathbf{r}')d\mathbf{r}'\right) d\mathbf{r}$$
$$+ O(\Delta^{2}\rho)$$

where,

and where $\Delta \rho_{\nu'}^c(\mathbf{r})$ and $\tilde{E}_{\nu'}^c$ is the correlation correction to density and to energy in the auxiliary N_A -electron system defined by a fixed external potential $\nu'(\mathbf{r})$.

The equality holds if the embedded determinant is obtained variationaly and at self-consistent embedding potential!

Density functionals defined in constrained search FDET for variational methods

Theorem (the variant for multi-reference methods) Wesolowski, J. Chem. Theor. & Comput., **16** (2020) 6880

$$E_{\nu_{AB}}^{HK}[\rho_{A}^{o}+\rho_{B}] = E_{\nu_{AB}}^{FDET}[\tilde{\Psi}_{A}^{MR^{0}},\rho_{B}] + \tilde{E}_{\nu'}^{c(dynamic)} - \int \tilde{\rho}_{A}^{0}(\mathbf{r}) \left(\int \Delta \rho_{\nu'}^{c(dynamic)}(\mathbf{r}') f_{xct}^{nad}[\tilde{\rho}_{A}^{0},\rho_{B}](\mathbf{r},\mathbf{r}')d\mathbf{r}'\right) d\mathbf{r} + O(\Delta^{2}\rho)$$

where,

$$v'(\mathbf{r}) = v_{A}(\mathbf{r}) + v_{emb}^{\mathsf{FDET}} [\tilde{\rho}_{A}^{\circ}, \rho_{B}; v_{B}](\mathbf{r})$$
$$f_{xct}^{nad} [\rho, \rho_{B}](\mathbf{r}, \mathbf{r}') = \frac{\delta^{2} E_{xct}^{nad} [\rho, \rho_{B}]}{\delta \rho(\mathbf{r}) \delta \rho(\mathbf{r}')}$$

and where $\Delta \rho_{v'}^{c(dynamic)}(\mathbf{r})$ and $\tilde{E}_{v'}^{c(dynamic)}$ is the "dynamic" correlation correction to density and to energy in the auxiliary N_A -electron system defined by a fixed external potential $v'(\mathbf{r})$.

The equality holds if the embedded multi-reference wavefunction is obtained variationaly and at self-consistent embedding potential!

Density functionals defined in constrained search FDET for variational methods

Geneva: A. Zech C. Gonzalez-Espinoza

Heidelberg: A. Dreuw S. Präger

N-representability of the target density in Frozen-Density Embedding Theory based methods: Numerical significance and its relation to electronic polarisation

Ricardi, Gonzalez-Espinoza, & Wesolowski, J. Chem. Phys. 157 (2022) 064108

 $\begin{array}{l} \textbf{Upper bound of } E^0_{\textbf{V}_{AB}} \text{ from FDET} \\ \text{Excited states} \\ \text{Approximating the } T^{nad}_s[\rho_A,\rho_B] \text{ component of } E^{nad}_{xct}[\rho_A,\rho_B] \end{array}$

The basic FDET equality yields only the upper bound of $E_{v_{AB}}^0$:

 $\min_{\Psi_A \to N_A} E_{\nu_{AB}}^{FDET} [\Psi_A, \rho_B] = E_{\nu_{AB}}^{FDET} [\Psi_A^o, \rho_B] = \underbrace{E_{\nu_{AB}}^{FTCT} \text{ (ue to the choice of } \rho_B)}_{E_{\nu_{AB}}^{HK} [\rho_A^o + \rho_B] \ge E_{\nu_{AB}}^{HK} [\rho_{AB}^o]} = E_{\nu}^o$

Is $\Delta E = E_{v_{AB}}^{HK}[\rho_A^o + \rho_B] - E_{v_{AB}}^{HK}[\rho_{AB}^o$ numerically significant if one takes as ρ_B the density of isolated molecule B?

Numerical examples: FDET-MP2 variant of FDET and $E_{xct}^{nad}[\rho_A, \rho_B] \approx \tilde{E}_{xct}^{nad(LDA)}[\rho_A, \rho_B]$ Ricardi, Gonzalez-Espinoza, & Wesolowski, J. Chem. Phys. **157** (2022) 064108

Upper bound of E_{VAB}^{0} from FDET Excited states Approximating the $T_s^{nad}[\rho_A, \rho_B]$ component of $E_{xct}^{nad}[\rho_A, \rho_B]$

Ricardi, Gonzalez-Espinoza, & Wesolowski, J. Chem. Phys. 157 (2022) 064108

FDET-MP2 Interaction energy E_{int} and the measure of non-negativity violation M for FDET calculations using different ρ_B : $\tilde{\rho}_B^{opt}$ (light blue), $\tilde{\rho}_B^{isol}$ (red) and polarised by electric field $\tilde{\rho}_B^{prepol}$ (dark blue). Horizontal lines are reference MP2 interaction energies.

Upper bound of $E^0_{\nu_A B}$ from FDET Excited states Approximating the $T_s^{nad}[\rho_A, \rho_B]$ component of $E^{nad}_{xct}[\rho_A, \rho_B]$

FDET for excited states

• Non-interacting Hamiltonian: LR-TDDFT

T.A. Wesolowski, J. Am. Chem. Soc., **126** (2004) 11444 M.E. Casida, T.A. Wesolowski Intl. J.Quant. Chem. 2004, **96**, 577

• Interacting Hamiltonian: Levy-Perdew theorem on extrema of $E_v^{HK}[\rho]$

T.A. Wesolowski, *J. Chem. Phys.*, **140** (2014) 18A530 A. Zech, F. Aquilante, T.A. Wesolowski, *J. Chem. Phys.*, **143** (2015) 164106

Notation, terminology, statement of the problem Variants of FDET Approximations for numerical applications ρ_B from various "physics" Upper bound of E_{vAB}^0 from FDET Excited states Approximating the $T_s^{nad}[\rho_A, \rho_B]$ component of $E_{xct}^{nad}[\rho_A, \rho_B]$

FDET eigenvalue equation might have more than just one stationary solution k > 0

$$\left[\hat{T}_{N_{A}} + \hat{V}_{N_{A}}^{ee} + \hat{V}_{A} + \hat{v}_{emb}^{FDET}(\Psi_{A}^{k})\right]\Psi_{A}^{k} = \lambda^{k}\Psi_{A}^{k}$$

ŵ

$$\begin{aligned} {}^{FDET}_{emb}(\Psi^{k}_{A}) &= v^{FDET}_{emb}[\rho^{k}_{A}, \rho_{B}, v_{B}](\mathbf{r}) \\ &= v_{B}(\mathbf{r}) + \int \frac{\rho_{B}(\mathbf{r}')}{|\mathbf{r}' - \mathbf{r}|} d\mathbf{\bar{r}}' + \left. \frac{\delta E^{nad}_{xcT}[\rho, \rho_{B}]}{\delta \rho(\mathbf{r})} \right|_{\rho(\mathbf{r}) = \rho^{k}_{A}(\mathbf{r}) = \langle \Psi^{k}_{A}|\hat{n}|\Psi^{k}_{A} \rangle \end{aligned}$$

 Ψ_A^k for different k are obtained with different embedding potential. They might be non-orthogonal. This undesired feature can be eliminated through the linearisation of $E_{xcT}^{nad}[\rho, \rho_B]$:

$$E_{xcT}^{nad}\left[\rho,\rho_{B}\right] \approx E_{xcT}^{nad\left(lin\right)}\left[\rho,\rho_{A}^{ref},\rho_{B}\right] = E_{xcT}^{nad}\left[\rho^{0},\rho_{B}\right] + \int v_{xcT}^{nad}\left[\rho^{0},\rho_{B}\right]\left(\rho-\rho^{0}\right)d\mathbf{r}$$

T.A. Wesolowski, *J. Chem. Phys.*, **140** (2014) 18A530 A. Zech, F. Aquilante T.A. Wesolowski, *J. Chem. Phys.*, **143** (2015) 164106

In ρ_A -linearised FDET: $\langle \Psi_A^I | \Psi_A^J \rangle = \delta_{IJ}$ and $E^J - E^I = \lambda^J - \lambda^I$!

Upper bound of $E^0_{\nu_A B}$ from FDET Excited states Approximating the $T^{nad}_s[\rho_A, \rho_B]$ component of $E^{nad}_{xct}[\rho_A, \rho_B]$

Environments

 $\begin{array}{l} (H_2O)_n \ n=1,10 \\ (NH_3)_n, \ n=1,4 \\ mixed (H_2O, NH_3) \\ (HCOOH)_n, \ n=1,2 \\ (MeOH)_n, \ n=1,3 \\ formamide, \ formimidamide, \ guanidine, \ acetamide, \ pyridine, \ HCOO^- \end{array}$

Statistics: 351 electronic excitations

$$\begin{split} \Delta \epsilon &= \epsilon_{complex}^{ADC(2)} - \epsilon_{chromophore}^{ADC(2)} \\ \delta \epsilon &= \epsilon_{complex}^{FDET/ADC(2)} - \epsilon_{complex}^{ADC(2)} \end{split}$$

 $\begin{array}{l} \mathsf{ME}{=}39\mathsf{meV} \ (0.9\mathsf{kcal}/\mathsf{mol}),\\ \mathsf{SD}{=}43\mathsf{meV} \ (1.0\mathsf{kcal}/\mathsf{mol}) \end{array}$

A. Zech, N. Ricardi, S. Prager, A. Dreuw & TAW., J. Chem. Theor. & Comput. 14 (2018) 4028

Upper bound of E_{vAB}^{0} from FDET Excited states Approximating the $T_s^{nad}[\rho_A, \rho_B]$ component of $E_{xct}^{nad}[\rho_A, \rho_B]$

Benchmarking vertical excitation energies

Upper bound of $E^0_{\nu_A B}$ from FDET Excited states Approximating the $T^{nad}_s[\rho_A, \rho_B]$ component of $E^{nad}_{xct}[\rho_A, \rho_B]$

Excitation energies of embedded chromophores from Frozen-Density Embedding Theory using state-specific electron densities of the environment

M. Fu &T.A. Wesolowski, J. Phys. Chem. A., 127 (2023) 535

Notation, terminology, statement of the problem Upper bound of $E_{v_{AB}}^0$ from FDET Excited states Approximations for numerical applications ρ_B from various "physics" Levy-PerdewTheorem $\epsilon_i[\rho_A^{ref}, \rho_B^j, \rho_B^o, v_{AB}]$ $E_{v_{AB}^{HK}}[\rho_{A}^{j}+\rho_{B}^{j}]-E_{v_{AB}^{HK}}[\rho_{A}^{o}+\rho_{B}^{o}]$ ΔE_i Fu&Wesolowski2022 $\widehat{}$ $\epsilon_i[\rho_A^{ref}, \rho_B^j, \rho_B^o, v_{AB}] + O(\Delta^2 \rho)$ $\overline{\lambda_{i}[\rho_{A}^{ref},\rho_{B}^{j}]-\lambda_{o}[\rho_{A}^{ref},\rho_{B}^{j}]}$ ϵ_i =

$$+ \overbrace{\left\langle \Phi_{A}^{\prime o(j)} \left| \hat{H}_{A} + \hat{v}_{emb}^{FDET} \left[\rho_{A}^{ref}, \rho_{B}^{j} \right] \right| \Phi_{A}^{\prime o(j)} \right\rangle - \left\langle \Phi_{A}^{\prime o(o)} \left| \hat{H}_{A} + \hat{v}_{emb}^{FDET} \left[\rho_{A}^{ref}, \rho_{B}^{o} \right] \right| \Phi_{A}^{\prime o(o)} \right\rangle + E_{v'j}^{c} - E_{v'o}^{c}}^{\epsilon_{j}^{C}} - \underbrace{\left\langle \int \rho_{A}^{ref} (\mathbf{r}) v_{xct}^{nad} \left[\rho_{A}^{ref}, \rho_{B}^{j} \right] (\mathbf{r}) d\mathbf{r} - \int \rho_{A}^{ref} (\mathbf{r}) v_{xct}^{nad} \left[\rho_{A}^{ref}, \rho_{B}^{o} \right] (\mathbf{r}) d\mathbf{r} \right) + E_{xct}^{nad} \left[\rho_{A}^{ref}, \rho_{B}^{j} \right] - E_{xct}^{nad} \left[\rho_{A}^{ref}, \rho_{B}^{o} \right] + \underbrace{\left\langle \Phi_{A}^{P} \right\rangle - \left\langle \Phi_{A$$

Upper bound of E_{vAB}^0 from FDET Excited states Approximating the $T_s^{nad}[\rho_A, \rho_B]$ component of $E_{xct}^{nad}[\rho_A, \rho_B]$

(1) 7-hydroxyquinoline(2NH₈)

(3) pyrimidine(H₂O)

(5) 7-hydroxyquinoline(2MeOH)

(7) 7-hydroxyquinoline(2H₂O)

(9) uracil(5H₂O)

(2) 7-hydroxyquinoline(MeOH)

(4) xanthine(MeCN)

(6) xanthine(MeOH

(8) aminopurine(H₂O)

(10) 7-hydroxyquinoline(MeOH)

State	ρ_B -polarising field	excitation energy
specificity		avarage error (eV)
No	none	0.0468 ± 0.0414
No	isolated chromophore	
	in ground state	0.0395 ± 0.0322
Yes	isolated chromophore	0.0384±0.0337
	in the corresponding state	
Yes	embedded chromophore	0.0300 ± 0.0258
	in the corresponding state	

In state specific case, Eq. 14 from Fu&Wesolowski, JPCA 2023 was used for ΔE_J . In state-non-specific case $\Delta E_J = \lambda_J - \lambda_0$.

QIF23 Łódz, Poland, June 21-24, 2023

Notation, terminology, statement of the problem Variants of FDET Approximations for numerical applications ρ_B from various "physics" Upper bound of $E^0_{\nu_A B}$ from FDET Excited states Approximations the $T_s^{nad}[\rho_A, \rho_B]$ component of $E^{nad}_{xct}[\rho_A, \rho_B]$

Improving upon local density approximation for $v_t^{nad}[\rho_A, \rho_B]$

• Problem detected and reported:

Frozen Density Functional Approach for ab initio Calculations of Solvated Molecules [Wesolowski & Warshel, J. Phys. Chem. 97, (1993) 8050]

Attempted solution:

Orbital-free effective embedding potential at nuclear cusps [Lastra et al., J. Chem. Phys. **129** (2008) 074107]

- Solution found for v_t^{nad}[ρ_A, ρ_B] but not for T^{nad}_s[ρ_A, ρ_B]: A non-decomposable approximation on the complete density function space for the non-additive kinetic potential [Polak et al., J. Chem. Phys. 156 (2022) 044103]
- Solution found for v_t^{nad}[ρ_A, ρ_B] and T_s^{nad}[ρ_A, ρ_B]: Symmetrized non-decomposable approximations of the non-additive kinetic energy functional [Polak et al., J. Chem. Phys. 158 (2023) 17410]

Notation, terminology, statement of the problem Variants of FDET Approximations for numerical applications ρ_B from various "physics" Upper bound of $E^0_{\nu_{AB}}$ from FDET Excited states Approximating the $T_s^{pad}[\rho_A, \rho_B]$ component of $E^{nad}_{xet}[\rho_A, \rho_B]$

Statement of the problem

Let us consider two subsystems comprising N_{AB} -electron system partitioned into N_A and N_B consistently with the number of electrons upon separation of the two subsystems.

$$\tilde{v}_{emb}^{FDET}[\rho_A, \rho_B, v_B](\vec{r}) = \frac{v_B(\vec{r})}{|\vec{r}' - \vec{r}|} d\vec{r}' + \tilde{v}_{xct}^{nad}[\rho_A, \rho_B](\vec{r})$$

- $\tilde{v}_{emb}^{FDET}[\rho_A, \rho_B, v_B](\vec{r})$ has a singularity at each nucleus due to v_B .
- What if:

A The used approximation for $v_{xct}^{nad}[\rho_A, \rho_B]$ is such that the singularity due to v_B remains negative and the total embedding potential has a bound state. and **B** The energy of this bound state is lower that that of one of the occupied orbitals obtained in the FDET eigenvalue equation.

Case **B** is in contradiction with our assumption that the partitioning $N_{AB} = N_A + N_B$ correspond to the dissociation limit.

Notation, terminology, statement of the problem Variants of FDET Approximations for numerical applications ρ_B from various "physics" Upper bound of $E^0_{v_AB}$ from FDET Excited states Approximating the $T_s^{nad}[\rho_A, \rho_B]$ component of $E^{nad}_{xct}[\rho_A, \rho_B]$

Challenge for $\tilde{v}_t^{nad}[\rho_A, \rho_B]$

Case **B** is not hypothetical: both exact $v_{xc}^{nad}[\rho_A, \rho_B]$ and Coulomb component of $v_{emb}^{FDET}[\rho_A, \rho_B, v_B]$ are finite the nuclei. $\tilde{v}_t^{nad(LDA)}[\rho_A, \rho_B]$ is also finite.

$$\tilde{v}_{emb}^{FDET}[\rho_A, \rho_B, v_B](\vec{r}) = v_B(\vec{r}) + \int \frac{\rho_B(\vec{r}')}{\left|\vec{r}' - \vec{r}\right|} d\vec{r}' + v_{xct}^{nad}[\rho_A, \rho_B](\vec{r})$$

Challenge for $\tilde{v}_t^{nad}[\rho_A, \rho_B]$: It is the only component of $v_{xct}^{nad}[\rho_A, \rho_B]$ that can stop such an artificial transfer of electrons from A to B.

Remark:

In QM/MM practice this problem is usually pragmatically avoided by not using any basis sets centered on atoms in the environment. A proper theory should yield meaningful solutions for a complete basis set!

Notation, terminology, statement of the problem Variants of FDET Approximations for numerical applications ρ_B from various "physics" Upper bound of $E^0_{\nu_{AB}}$ from FDET Excited states Approximating the $T_s^{nad}[\rho_A, \rho_B]$ component of $E_{xct}^{nad}[\rho_A, \rho_B]$

This property of $v_t^{nad}[\rho_A, \rho_B](\mathbf{r})$ cannot be reproduced by any decomposable approximation based on gradient-expansion approximation! But it is highly desirable.

$$v_t^{nad(limit)}[\rho_B^{exp}](\mathbf{r}) = -\frac{1}{4} \frac{\nabla^2 \rho_B}{\rho_B(\mathbf{r})} + \frac{1}{8} \frac{|\nabla \rho_B|^2}{\rho_B^2(\mathbf{r})} = \underbrace{-\frac{\zeta^2}{2}}_{-\frac{\zeta^2}{2}} + \underbrace{\frac{\zeta}{r}}_{r}^{repulsive} \text{ if } \rho_B^{exp}(\mathbf{r}) = A \exp(-2\zeta r)$$

Notation, terminology, statement of the problem Variants of FDET Approximations for numerical applications ρ_B from various "physics" Upper bound of $E^0_{\nu_{AB}}$ from FDET Excited states Approximating the $T_s^{nad}(\rho_A, \rho_B)$ component of $E^{nad}_{xct}(\rho_A, \rho_B)$

Our first attempt: NDSD approximation

$$\tilde{v}_t^{\mathrm{nad}(\mathrm{NDSD})}[\rho_A, \rho_B] = v_t^{\mathrm{nad}(\mathrm{LDA})}[\rho_A, \rho_B] + f^{\mathrm{NDSD}}(\rho_B)v_t^{\mathrm{limit}}[\rho_B]$$

with
$$v_t^{nad(TF)}[\rho_A, \rho_B] = \frac{5}{3}C_{TF}\left((\rho_A + \rho_B)^{2/3} - \rho_A^{2/3}\right)$$

$$v_t^{nad(limit)}[\rho_B^{exp}](\mathbf{r}) = \underbrace{-\frac{1}{4} \frac{\nabla^2 \rho_B}{\rho_B(\mathbf{r})} + \frac{1}{8} \frac{|\nabla \rho_B|^2}{\rho_B^2(\mathbf{r})}}_{\text{undesired}}$$
$$= \underbrace{-\frac{\zeta^2}{2}}_{-\frac{\zeta^2}{2}} + \underbrace{\frac{\zeta}{r}}_{-\frac{\zeta}{r}} \text{ if } \rho_B^{exp}(\mathbf{r}) = A \exp(-2\zeta r)$$

[Lastra et al., J. Chem. Phys. 129 (2008) 074107]

The follow up: Part I

The differential operator

$$D_{\gamma}[\rho] = |\nabla \rho|^2 - \gamma \rho \nabla^2 \rho$$

corresponds to $v_t^{nad(limit)}[\rho_B^{exp}]$ if $\gamma = 2$.

The analysis of spaces solving the homogeneous differential equation $D_{\gamma=2}[\rho] = 0$ involves functions which cannot be electron densities. Only if $\gamma = 1$, the solutions of $D_{\gamma}[\rho] = 0$ are exponential densities, i.e. the functions covering completely the space of molecular electron densities.

NEW non-decomposable approximation:

does not contain the undesired constant!

Upper bound of $E^0_{v_{AB}}$ from FDET Excited states

Approximating the $T_s^{nad}[\rho_A, \rho_B]$ component of $E_{xct}^{nad}[\rho_A, \rho_B]$

$$\tilde{v}_t^{\mathrm{nad(NDCS)}}[\rho_A, \rho_B] = v_t^{\mathrm{nad(TF)}}[\rho_A, \rho_B] +$$

$$f^{\text{NDCS}}(\rho_B) \cdot D_{\gamma=1}[\rho_B]$$

Polak et al., J. Chem. Phys. 156 044103 (2022)

Notation, terminology, statement of the problem Variants of FDET Approximations for numerical applications ρ_B from various "physics" Upper bound of $E^0_{\nu_{AB}}$ from FDET Excited states Approximating the $T_s^{nad}[\rho_A, \rho_B]$ component of $E^{nad}_{xct}[\rho_A, \rho_B]$

Differences between subsystem DFT density and the reference Kohn-Sham density

$$\|(\rho_{A} + \rho_{B} - \rho_{ref})^{1/2}\|^{2} = \int \left(|(\rho_{A} + \rho_{B} - \rho_{ref})^{\frac{1}{2}}|^{2} + |\nabla(\rho_{A} + \rho_{B} - \rho_{ref})^{\frac{1}{2}}|^{2} \right)$$

optimisation of ρ_A and ρ_B with various $\tilde{v}_t^{nad}[\rho_A, \rho_B]$

Α	В	TF	GEA2	NDSD	NDCS	$\ (\rho_A^{isol}+\rho_B^{isol}-\rho_{ref})^{1/2}\ ^2$
Li ⁺	H ₂ O	0.0620	0.1227	0.0508	0.0447	0.3675
Be ²⁺	H ₂ O	0.5149	0.7295	0.3951	0.2422	1.0457
Na^+	H_2O	0.0200	0.0711	0.0174	0.0168	0.2879
Mg ²⁻	+ Η ₂ Ο	0.0942	0.2487	0.0695	0.0489	0.7177
K^+	H_2O	0.0678	-	-	0.0322	0.2418
Rb^+	H_2O	0.4949	0.5185	0.5461	0.4906	0.6546
Li^+	CO_2	0.0316	0.0797	0.0273	0.0270	0.4544
K^+	CO_2	0.0197	0.0630	-	0.0173	0.2926
Li ⁺	F_2	0.0279	0.0463	0.0222	0.0205	0.3031

TFand GEA2 denote the approximation for	$\Gamma_s[\rho]$ used in decomposable	approximations for	$v_t^{nad}[\rho_A, \rho_B];$
NDSD and NDCS are not decomposable.			

Polak et al., J. Chem. Phys. 156 044103 (2022)

Notation, terminology, statement of the problem Variants of FDET Approximations for numerical applications ρ_B from various "physics" Upper bound of $E^0_{\nu_{AB}}$ from FDET Excited states Approximating the $T_s^{nad}[\rho_A, \rho_B]$ component of $E^{nad}_{xct}[\rho_A, \rho_B]$

Differences between subsystem DFT density and the reference Kohn-Sham density

$$\|(\rho_{A} + \rho_{B} - \rho_{ref})^{1/2}\|^{2} = \int \left(|(\rho_{A} + \rho_{B} - \rho_{ref})^{\frac{1}{2}}|^{2} + |\nabla(\rho_{A} + \rho_{B} - \rho_{ref})^{\frac{1}{2}}|^{2} \right)$$

		optimisation of $ ho_A$ and $ ho_B$ with various $ ilde{v}_t^{nad}[ho_A, ho_B]$				
Α	В	TF	GEA2	NDSD	NDCS	$\ (\rho_A^{\textit{isol}}+\rho_B^{\textit{isol}}-\rho_{\textit{ref}})^{1/2}\ ^2$
H ₂ O	H ₂ O	0.0210	0.0311	0.0209	0.0224	0.0914
Li ⁺	F^{-}	0.2044	0.2839	0.1670	0.1465	0.4440
Li ⁺	CI^{-}	0.2623	0.3788	0.2148	0.1843	0.6088
Li ⁺	Br^{-}	0.2969	0.4300	0.2440	0.2075	0.6736
Na^+	F^{-}	0.0691	0.1583	0.0578	0.0479	0.3592
Na^+	CI^{-}	0.0619	0.1893	0.0505	0.0416	0.5231
Na^+	Br^{-}	0.0615	0.2071	0.0490	0.0404	0.5926
Be^{2+}	0 ² -	1.1169	1.2709	0.9723	0.8114	2.1072
Mg^{2+}	0 ² -	0.2988	0.5172	0.2205	0.1531	2.1176
HF	HF	0.0537	0.0441	0.0539	0.0591	0.1504
κ^+	CI^{-}	_2	_2	_2	0.1969	0.4279
K^+	F ⁻	_2	_2	_2	0.1929	0.4916

Polak et al., J. Chem. Phys. 156 044103 (2022)

Notation, terminology, statement of the problem Variants of FDET Approximations for numerical applications ρ_B from various "physics" Upper bound of $E^0_{\nu_{AB}}$ from FDET Excited states Approximating the $T_s^{nad}[\rho_A, \rho_B]$ component of $E_{xct}^{nad}[\rho_A, \rho_B]$

Decomposable $\tilde{v}_t^{nad}[\rho_A, \rho_B]$ yield symmetric $\tilde{T}_s^{nad}[\rho_A, \rho_B]$. $\tilde{T}_s^{nad(NDCS)}[\rho_A, \rho_B]$ corresponding to $v_t^{nad(NDCS)}[\rho_A, \rho_B]$ might not be symmetric.

And it is!

Com	plex	Interaction energies from subsystem DF1		-
A	В	$\tilde{E}_{int}^{NDCS}[\rho_A, \rho_B]$	$\tilde{E}_{int}^{NDCS}[\rho_B, \rho_A]$	E _{int} KS
Li^+	H_2O	-39.82	-37.90	-37.48
Li^+	CO_2	-21.87	-20.72	-21.47
Li^+	F^{-}	-194.80	-188.32	-187.56
Li^+	Cl^-	-162.07	-157.22	-153.57
Li^+	OH^-	-195.79	-189.80	-191.69
K^+	F^{-}	-131.51	-140.90	-141.83
K^+	Cl^{-}	-112.80	-119.64	-116.62
K^+	OH^-	-138.21	-140.80	-142.08
Mg^{2+}	O^{2-}	-696.66	-670.52	-666.35
Mg^{2+}	H_2O	-87.24	-83.96	-85.21
Be^{2+}	O^{2-}	-947.31	-883.99	-857.56
Be^{2+}	H_2O	-176.28	-153.96	-149.97

Polak et al., J. Chem. Phys. 158 (2023) 17410

Notation, terminology, statement of the problem Variants of FDET Approximations for numerical applications ρ_B from various "physics" Upper bound of $E^0_{\nu AB}$ from FDET Excited states Approximating the $T_s^{nad}[\rho_A, \rho_B]$ component of $E^{nad}_{xct}[\rho_A, \rho_B]$

Symmetrisation of $\tilde{T}_s^{nad(NDCS)}[\rho_A, \rho_B]$

Straightforward solution:

$$\begin{split} \tilde{T}_{s}^{nad(NDCSsym)}[\rho_{A},\rho_{B}] &= \tilde{T}_{s}^{nad(NDCS)}[\rho_{A},\rho_{B}] + \frac{1}{2}\tilde{T}_{s}^{nad(NDCSasym)}[\rho_{A},\rho_{B}] \\ & \text{with} \\ \tilde{T}_{s}^{nad(NDCSsym)}[\rho_{A},\rho_{B}] &= \tilde{T}_{s}^{nad(NDCS)}[\rho_{A},\rho_{B}] - \tilde{T}_{s}^{nad(NDCS)}[\rho_{B},\rho_{A}] \end{split}$$

But this would mean modification of the potential:

$$\tilde{v}_{t}^{nad(NDCSsym)}[\rho_{A},\rho_{B}] = \tilde{v}_{t}^{nad(NDCS)}[\rho_{A},\rho_{B}] + \frac{\delta \tilde{T}_{s}^{nad(NDCS)}[\rho_{B},\rho_{A}]}{\delta \rho_{A}}$$

• Our solution [Polak et al., J. Chem. Phys. 158 (2023) 17410]

$$\tilde{T}_{s}^{nad(NDCSsym)}[\rho_{A},\rho_{B}] = \tilde{T}_{s}^{nad(NDCS)}[\rho_{A},\rho_{B}] + C^{sym} \int \rho_{A} \frac{\delta \tilde{T}_{s}^{nad(NDCS)}[\rho_{B},\rho_{A}]}{\delta \rho_{A}} d\mathbf{r}$$

and choosing the constant C^{sym} to yield the first-order correction to $v_s^{nad(NDCS)}[\rho_A, \rho_B]$ making the whole functional symmetric.

Notation, terminology, statement of the problem Variants of FDET Approximations for numerical applications ρ_B from various "physics" Upper bound of $E^0_{V_AB}$ from FDET Excited states Approximating the $T^{nad}_s[\rho_A, \rho_B]$ component of $E^{nad}_{xct}[\rho_A, \rho_B]$

		Interaction energies		
Con	nplex	TF	sym-NDCS	KS
Li^+	H_2O	-40.66	-39.02	-37.48
		(8.48)	(4.11)	
Li^+	CO_2	-22.41	-21.39	-21.47
		(4.37)	(0.37)	
Li^+	F^{-}	-196.75	-192.04	-187.56
		(4.90)	(2.39)	
Li^+	Cl^{-}	-164.08	-160.05	-153.57
		(6.84)	(4.22)	
Li^+	OH^{-}	-197.09	-193.20	-191.69
		(2.82)	(0.79)	
K^+	F^{-}		-136.94	-141.83
			(3.45)	
K^+	Cl^{-}		-116.77	-116.62
			(0.13)	
K^+	OH^{-}		-139.80	-142.08
			(1.61)	
Mg^{2+}	O^{2-}	-691.91	-684.44	-666.35
		(3.84)	(2.71)	
Mg^{2+}	H_2O	-89.21	-85.94	-85.21
		(4.69)	(0.85)	
Be^{2+}	0^{2-}	-954.86	-920.58	-857.86
		(11.31)	(7.31)	
Be^{2+}	H_2O	-186.51	-167.41	-149.97
	-	(24.36)	(11.63)	

Combining physical laws for different scales in FDET

$$\underbrace{<\rho_B>_{statistical ensemble}^{\text{continuum at scale of }\bar{\mathbb{A}}}}_{i} = \sum_{i}^{atomtype} \int P_i(\mathbf{r}')\rho^i(\mathbf{r}-\mathbf{r}')d\mathbf{r}'$$

Kaminski et al. Zhou et al. Shedge et al.	J. Phys. Chem. A 114 (2010) 6082 Phys. Chem. Chem. Phys. 13 (2011) 10565 Chem. Phys. Chem. 15 (2014) 3291	}	P from 3D-RISM
Lyaktonov et al. Gonzalez-Espinoza et al Ricardi et al.	Phys. Chem. Chem. Phys.(2016) 18 21069 J. Chem. Theor. & Comput. 18 (2022) 1072 J. Chem. Theor. & Comput. (2023) in press	}	P from classical MD
Gonzalez-Espinoza et a	I. to be published	}	P from MolecularDFT
Ricardi et al.	Acta Cryst Foundation and Advances A76 57(2020)	}	P from X-ray diffraction

Averaged electrostatic potentials from MD

Number of frames

[C.E. Gonzalez-Espinoza, C. Rumble, D. Borgis, and T.A.

Wesolowski, J. Chem. Theor. & Comput. 18 (2022)

1072]

Aminocoumarin 153 in water

Aminocoumarin 153 in water

Aminocoumarin 153 in acetonitrile

Aminocoumarin 153 in water

Aminocoumarin 153 in water

Aminocoumarin 153 in acetonitrile

Structuring effect of the chromophore on the solvent

 $< \rho_B >$ (water)

Structuring effect of the chromophore on the solvent

Total solvent charge (acetonitrile)

Total solvent charge (water)

Performance of $< \rho_B >^{MDFT}$ in FDET

Table: Vertical excitation energies shifts (in eV) for acetone and C153. Excitation energies of the chromophores in vacuum are 4.270 eV (acetone) and 3.135 eV (coumarin C153).

	Acet	one	C153		
Source of $\langle \rho_B \rangle_{ens}$	Water	ACN	Water	ACN	
MDFT MD	0.239 0.230	0.099 0.118	-0.250 -0.202	-0.120 -0.097	

Gonzalez-Espinoza, Rumble, Borgis, Wesolowski, to be publisjed

$< \rho_B >$ from molecular crystals

Embedding-theory-based simulations using experimental electron densities for the environment

[N. Ricardi, M. Ernst, P. Macchi, and T. A. Wesolowski, Acta Crystallographica -Foundation and Advances A76 57 (2020)]

FDET with ρ_B taken from molecular crystal of glycylglycine

The Team and Collaborators

Collaborations: A. Dreuw (Heidelberg), I. Schapiro (Tel

Aviv), D. Borgis (Paris), C. Rumble (Philadelphia), P.

Macchi (Milan), M. Kowalska (UniGe-phys/CERN), M.

Gander (UniGe-math)

The Team

- Dr. Cristina Elisabeth Gonzalez Espinoza approximations, multi-scale methods, code development and integration
- Dr. Alexander Zech linearized FDET, code development
- Mr. Elias Polak NDCS
- Ms. Mingxue Fu TPA,state specific ρ_B
- Dr. Nicolo Ricardi electronic excitations, experimental ρ_B
- Mr. Yann Gimbal-Zofka EFG, polarisation of ρ_B
- Mr. Tanguy Englert NDCS

www.unige.ch/sciences/chifi/wesolowski/

