Constrained minimisation of the Hohenberg-Kohn energy functional: challenge for theory and opportunities for multi-scale simulations

Tomasz A. Wesolowski, Université de Genève, Switzerland www.unige.ch/sciences/chifi/wesolowski/

Lecture on Frozen-Density Embedding Theory (FDET) at QIF23

(1) Notation, terminology, statement of the problem

- What we will need for this lecture?
- What is FDET about?
(2) Variants of FDET
- Density functionals defined in constrained search
- FDET for variational embedded wavefunction and interacting Hamiltonian
- Ψ_{A} of a Full Configuration Interaction form
- Ψ_{A} of a single determinant form
(3) Approximations for numerical applications
- Upper bound of $E_{v_{A B}}^{0}$ from FDET
- Excited states
- State-independent ρ_{B}
- State-specific ρ_{B}
- Approximating the $T_{s}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$ component of $E_{x c t}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$

4 Combining physical laws for different scales in FDET

- Variational principle in QM:

$$
\min _{\Psi \rightarrow N}\langle\Psi| \hat{H}_{v}|\Psi\rangle=\left\langle\Psi^{0}\right| \hat{H}\left|\Psi^{0}\right\rangle=E_{v}^{0}
$$

- Perturbation theory (first order):

For two N -electron Hamiltonians (\hat{H}^{\prime} and \hat{H}) with Ψ^{0} being the ground-state wavefunction for \hat{H} :
$E^{\prime 0}-E^{0}=\left\langle\Psi^{0}\right| \hat{H}^{\prime}-\hat{H}\left|\Psi^{0}\right\rangle+$ higher orders
$E^{\prime 0}-E^{0}=\int \rho^{o}(\mathbf{r})\left(v^{\prime}(\mathbf{r})-v(\mathbf{r})\right) d \mathbf{r}+$ higher orders \longleftarrow if $\hat{H}^{\prime}-\hat{H}$ is a potential

- Density Functional Theory:

$$
\begin{gathered}
\min _{\Psi \rightarrow \rho}\langle\Psi| \hat{H}_{v}|\Psi\rangle=E_{v}^{H K}[\rho] \quad \text { The Hohenberg-Kohn density functional } \\
\min _{\rho \rightarrow N} E_{v}^{H K}[\rho]=E_{v}^{H K}\left[\rho^{0}\right]=E_{v}^{0} \quad \longleftarrow \text { The second Hohenberg-Kohn theorem }
\end{gathered}
$$

Functional derivative of a functional $F[\rho]$

$$
v_{F}[\rho](\mathbf{r}) \equiv \frac{\delta F[\rho]}{\delta \rho(\mathbf{r})}=\lim _{h \rightarrow 0} \frac{F[\rho+h \cdot g(\mathbf{r})]-F[\rho]}{h}
$$

for any admissible function $g(r)$

Attention "false friend"! usually $F[\rho] \neq \int v_{F}[\rho](\mathbf{r}) \cdot \rho(\mathbf{r}) d \mathbf{r}$

The functional $E_{v}^{H K}[\rho]$ for $\rho \neq \rho_{v}^{0}$

$$
\min _{\Psi_{A B} \rightarrow \rho_{A B}}\left\langle\Psi_{A B}\right| \hat{H}_{A B}\left|\Psi_{A B}\right\rangle=E_{v_{A B}}^{H K}\left[\rho_{A B}\right] \geq E_{v_{A B}}^{H K}\left[\rho_{A B}^{0}\right]=E_{v_{A B}}^{0}
$$

Notation: $N_{A B}$ - number of electrons $\left(N_{A B}=N_{A}+N_{B}\right), v_{A B}$ - external potential $\left(v_{A B}=v_{A}+v_{B}\right)$.

Why to consider $E_{V_{A B}}^{H K}\left[\rho_{A B}\right]$ for other densities than the ground-state density?

- The $E_{V_{A B}}^{H K}\left[\rho_{A B}\right]$ might have other stationary points than $\rho_{A B}^{0}$ Perdew-Levy theorem on extrema of $E_{v}^{H K}[\rho]$
- Behaviour of $E_{V_{A B}}^{H K}\left[\rho_{A B}\right]$ at $\rho_{A B} \approx \rho_{A B}^{0}$ response theory, reactivity indices, numerical algorithms:
- Minimisation of $E_{V_{A B}}^{H K}\left[\rho_{A B}\right]$ with additional constraints imposed on $\rho_{A B}$ Case of FDET: the constraint is $\forall_{\mathbf{r}} \rho_{A B}(\mathbf{r}) \geq \rho_{B}(\mathbf{r})$

Notation, terminology, statement of the problem

Why this constraint: $\forall_{\mathrm{r}} \rho_{A B}(\mathbf{r}) \geq \rho_{B}(r)$?
Frequently, we know something about the total density and we would like to use thus knowledge in setting up a numerical simulation:

$$
\rho_{A B} \approx \rho_{A}^{\text {unknown }}+\rho_{B}^{\text {known }}
$$

- Core-valence separation:
$\rho_{B}^{\text {known }}$ - density of core electrons, $\rho_{A}^{\text {unknown }}$ density of valence electrons
- Multi-level/multi-scale simulations:
$\rho_{A}^{\text {unknown }}$ obtained from embedded N_{A} electron wavefunction (Ψ_{A} with $N_{A}<N_{A B}$) and ρ_{B} from experiment or from inexpensive methods.

We cannot assure, however, that there exists such ρ_{A} that

$$
\forall_{\mathbf{r}}\left(\rho_{A}(\mathbf{r})+\rho_{B}^{\text {known }}(\mathbf{r})=\rho_{v_{A B}}^{0}(\mathbf{r})\right)
$$

the functional $E_{V_{A B}}^{H K}\left[\rho_{A B}\right]$ must be considered for other than ground-state densities.

Frozen-Density Embedding Theory (FDET) concerns the constrained optimisation of the Hohenberg-Kohn functional:

$$
\text { Energy }^{F D E T}=\min _{\substack{\rho(\mathbf{r}) \rightarrow N_{A B} \\ \forall \mathrm{r} \rho(\mathrm{r}) \geq \rho_{B}(\mathrm{r})}} E_{v_{A B}}^{H K}[\rho]
$$

Note the difference with the second Hohenberg-Kohn theorem:

$$
E_{v_{A B}}^{0}=\min _{\rho(\mathbf{r}) \rightarrow N_{A B}} E_{v_{A B}}^{H K}[\rho]
$$

Energy ${ }^{F D E T}$ is thus the lowest possible energy (not necessarily $E_{v_{A B}}^{0}=E_{V_{A B}}^{H K}\left[\rho_{A B}^{0}\right]$) for the total density constructed as $\rho_{A B}=\rho_{A}+\rho_{B}^{\text {known }}$.

Since good approximations for the explicit density functional ($E_{v}^{H K}[\rho] \approx \tilde{E}_{v}^{H K}[\rho]$) do not exist, the constrained optimisation problem must be formulated not for ρ_{A} but for some auxiliary quantum mechanical descriptors for the embedded N_{A} electrons.

Notation, terminology, statement of the problem

Examples of relations between quantum mechanical descriptors $\left(X_{A B}\right)$ and $E_{v_{A B}}^{H K}\left[\rho_{A B}\right]$ for a system of $N_{A B}$ electrons in an external potential $v_{A B}(\mathbf{r})$

- $\mathbf{X}_{\mathbf{A B}}=\rho_{\mathbf{A B}}($ Orbital-free DFT):

$$
\min _{\rho_{A B} \rightarrow N_{A B}} E_{V_{A B}}^{H K}\left[\rho_{A B}\right]=E_{V_{A B}}^{H K}\left[\rho_{A B}^{0}\right]=E_{v_{A B}}^{0}
$$

- $\mathbf{X}_{\mathrm{AB}}=\boldsymbol{\Phi}_{\mathrm{AB}}^{\mathrm{KS}}($ Kohn-Sham DFT $):$

$$
\min _{\Phi_{A B}^{K S} \rightarrow N_{A B}}\left\langle\Phi_{A B}^{K S}\right| \hat{H}_{A B}^{K S}\left|\Phi_{A B}^{K S}\right\rangle=E_{v_{A B}}^{H K}\left[\rho_{A B}^{0}\right]+\int \rho_{A B}^{0} v_{x c}\left[\rho_{A B}^{0}\right] d \mathbf{r}-E_{x c}\left[\rho_{A B}^{0}\right]+\frac{1}{2} J\left[\rho_{A B}^{0}\right]
$$

- $\mathrm{X}_{\mathrm{AB}}=\Psi_{\mathrm{AB}}$ (Variational methods - interacting Hamiltonians):

$$
\min _{\Psi_{A B} \rightarrow N_{A B}}\left\langle\Psi_{A B}\right| \hat{H}_{A B}\left|\Psi_{A B}\right\rangle=E_{V_{A B}}^{H K}\left[\rho_{A B}^{0}\right]
$$

- $\mathbf{X}_{\mathrm{AB}}=\boldsymbol{\Phi}_{\mathrm{AB}}^{\mathrm{HF}}, \mathrm{E}_{\mathrm{V}_{\mathrm{AB}}}^{\text {corr }}$ (Non-variational methods - interacting Hamiltonians):

$$
\min _{\Phi_{A B}^{H F} \rightarrow N_{A B}}\left\langle\Phi_{A B}^{H F}\right| \hat{H}_{A B}\left|\Phi_{A B}^{H F}\right\rangle=E_{V_{A B}}^{H K}\left[\rho_{A B}^{0}\right]-E_{V_{A B}}^{c o r r}
$$

The basic equality enforced in the construction of the FDET energy functional

$$
\text { Energy }{ }^{F D E T}\left(X_{A}^{\min }, \rho_{B}\right)=E_{V_{A B}}^{H K}\left[\rho=\rho\left(X_{A}^{\min }\right)+\rho_{B}\right]
$$

- X_{A} is a quantum mechanical descriptor (or descriptors) for $N_{A}<N_{A B}$ electrons, which is (are) available in multi-level level simulations (Kohn-Sham orbitals, embedded wavefunction, correlation energy, density matrix, etc.). The subsystem for which X_{A} is used as a descriptor will be labelled as quantum system.
- $\rho_{B}(\vec{r})$ is a non-negative function such that $\int \rho_{B}=N_{B}=N_{A B}-N_{A}$. The subsystem for which ρ_{B} is used as a descriptor will be labelled environment.
- The total density $\rho(\overrightarrow{\mathrm{r}})$ is constructed in the bottom-up way using the available quantum mechanical descriptor for N_{A} electrons and a given ρ_{B} :

$$
\rho=\rho_{A}\left(X_{A}\right)+\rho_{B}
$$

The descriptor X_{A}, for which the basic energy equality of FDET holds, is obtained in the constrained minimisation of $E_{V_{A B}}^{H K}[\rho]$:

$$
\text { Energy } F D E T\left(X_{A}^{\min }, \rho_{B}\right)=\overbrace{\min _{X_{A} \rightarrow N_{A}} \text { Energy }^{F D E T}\left(X_{A}, \rho_{B}\right)}^{N_{A} \text {-electron problem }}=\overbrace{\substack{(\mathrm{r}) \rightarrow N_{A B} \\ \forall_{\mathbf{r}} \rho(\mathrm{r}) \geq \rho_{B}(\mathrm{r})}}^{E_{v_{A B}}^{H K}[\rho]}
$$

- Nothing is over- or undercounted: the basic FDET equality for energy
- Any theory - classical or quantum - can be used to generate ρ_{B}
- Optimal X_{A} from the Euler-Lagrange equation

From now on, we consider some arbitrary splitting of the total external potential $\left(v_{A B}=v_{A}+v_{B}\right)$ defining the Hamiltonian \hat{H}_{A} and the functional $E_{v_{B}}^{H K}\left[\rho_{B}\right]$.

The functionals in Kohn-Sham DFT defined implicitly [M. Levy, Proc. Natl. Acad. Sci. USA, 76 (1972) 6062]

$$
\begin{aligned}
\min _{\tilde{\Psi} \longrightarrow \rho}\langle\tilde{\Psi}| \hat{T}+\hat{V}^{e e}|\tilde{\Psi}\rangle=\left\langle\tilde{\Psi}^{o}[\rho]\right| \hat{T}+\hat{V}^{e e}\left|\tilde{\Psi}^{o}[\rho]\right\rangle= & T[\rho]+V_{e e}[\rho] \longleftarrow \text { variational principle } \\
& \Psi \text { is } \mathrm{N}-\text { representable } \\
\min _{\tilde{\Psi}_{s} \rightarrow \rho}\left\langle\tilde{\Psi}_{s}\right| \hat{T}\left|\tilde{\Psi}_{s}\right\rangle=\left\langle\tilde{\Psi}_{s}^{o}[\rho]\right| \hat{T}\left|\tilde{\Psi}_{s}^{o}[\rho]\right\rangle= & T_{s}[\rho] \longleftarrow \text { Kohn - Sham DFT (Levy) } \\
& \Psi_{s} \text { is single - determinant : } \Psi_{s} \equiv \Phi \\
E_{x c}[\rho]= & V_{e e}[\rho]-\frac{1}{2} \iint \frac{\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r}^{\prime} d \mathbf{r}+T[\rho]-T_{s}[\rho] \\
E_{c}[\rho] \equiv & T[\rho]+V_{e e}[\rho]-\min _{\tilde{\Phi} \rightarrow \rho}\langle\tilde{\Phi}| \hat{T}+\hat{V}^{e e}|\tilde{\Phi}\rangle
\end{aligned}
$$

For FDET:

$$
\mathrm{E}_{\mathrm{xcT}}^{\text {nad }}\left[\rho_{\mathrm{A}}, \rho_{\mathrm{B}}\right] \equiv T_{s}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]+E_{x c}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]
$$

where

$$
\left.\begin{array}{rl}
E_{x c}^{n a d}
\end{array} \rho_{A}, \rho_{B}\right] \equiv E_{x c}\left[\rho_{A}+\rho_{B}\right]-E_{x c}\left[\rho_{A}\right]-E_{x c}\left[\rho_{B}\right] .
$$

Case of variational embedded wavefunction and interacting Hamiltonian

Embedding a multi-determinantal wavefunction in orbital-free environment
[Wesolowski, Phys. Rev. A, 77 (2008) 012504]

The total energy functional (Full Cl form of Ψ_{A})

$$
\begin{aligned}
E_{v_{A B}}^{\mathrm{FDET}}\left[\Psi_{A}, \rho_{B}\right] & =\left\langle\Psi_{A}\right| \hat{H}_{A}+\hat{v}_{e m b}^{\mathrm{FDET}}\left[\rho_{A}, \rho_{B} ; v_{B}\right]\left|\Psi_{A}\right\rangle+E_{x c T}^{\mathrm{nad}}\left[\rho_{A}, \rho_{B}\right] \\
& -\int\left(v_{x c T}^{\mathrm{nad}}\left[\rho_{A}, \rho_{B}\right](\mathbf{r})\right) \rho_{A}(\mathbf{r}) d \mathbf{r}+E_{v_{B}}^{H K}\left[\rho_{B}\right]+v_{A}\left[\rho_{B}\right]
\end{aligned}
$$

Ψ_{A}^{o} from Euler-Lagrange equation

$$
\frac{\delta E_{v_{A B}}^{F D E T}\left[\Psi_{A}, \rho_{B}\right]}{\delta \Psi_{A}}-\lambda \Psi_{A}=0 \quad \longrightarrow\left[\hat{T}_{N_{A}}+\hat{v}_{N_{A}}^{e e}+\hat{v}_{A}+\hat{v}_{e m b}^{F D E T}\left[\rho_{A}, \rho_{B} ; v_{B}\right]\right] \Psi_{A}=\lambda \Psi_{A}
$$

with the multiplicative embedding operator (embedding potential)

$$
\begin{aligned}
\hat{v}_{e m b}^{F D E T} & =v_{e m b}^{F D E T}\left[\rho_{A}, \rho_{B}, v_{B}\right](\mathbf{r}) \\
& =v_{B}(\mathbf{r})+\int \frac{\rho_{B}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}^{\prime}-\mathbf{r}\right|} d \overrightarrow{\mathbf{r}}^{\prime}+\left.\frac{\delta E_{x c T}^{n a d}\left[\rho, \rho_{B}\right]}{\delta \rho(\mathbf{r})}\right|_{\rho(\mathbf{r})=\rho_{A}(\mathbf{r})=\left\langle\Psi_{A}\right| \hat{n}\left|\Psi_{A}\right\rangle}
\end{aligned}
$$

The total energy functional $\left(\Psi_{S} \equiv \Phi_{A} \leftarrow\right.$ single determinant form $)$

$$
\begin{aligned}
E_{v_{A B}}^{\mathrm{FDET}}\left[\Phi_{A}, \rho_{B}\right] & =\left\langle\Phi_{A}\right| \hat{H}_{A}+\hat{v}_{e m b}^{\mathrm{FDET}}\left[\rho_{A}, \rho_{B} ; v_{B}\right]\left|\Phi_{A}\right\rangle+E_{x c T}^{\mathrm{nad}}\left[\rho_{A}, \rho_{B}\right]+E_{c}\left[\rho_{A}\right] \\
& -\int\left(v_{x c T}^{\mathrm{nad}}\left[\rho_{A}, \rho_{B}\right](\mathbf{r})+v_{c}\left[\rho_{A}\right](\mathbf{r})\right) \rho_{A}(\mathbf{r}) d \mathbf{r}+E_{v_{B}}^{H K}\left[\rho_{B}\right]+v_{A}\left[\rho_{B}\right]
\end{aligned}
$$

Φ_{A}^{o} from Euler-Lagrange equation

$$
\frac{\delta E_{v_{A B}}^{F D E T}\left[\Phi_{A}, \rho_{B}\right]}{\delta \Phi_{A}}-\lambda \Phi_{A}=0 \quad \longrightarrow\left[\hat{T}_{N_{A}}+\hat{v}_{N_{A}}^{e e}+\hat{v}_{A}+\hat{v}_{e m b}^{F D E T}\left[\rho_{A}, \rho_{B} ; v_{B}\right]\right] \Phi_{A}=\lambda \Phi_{A}
$$

with the multiplicative embedding operator (embedding potential)

$$
\begin{aligned}
\hat{v}_{e m b}^{F D E T} & =v_{e m b}^{F D E T}\left[\rho_{A}, \rho_{B}, v_{B}\right](\mathbf{r}) \\
& =v_{B}(\mathbf{r})+\int \frac{\rho_{B}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}^{\prime}-\mathbf{r}\right|} d \overrightarrow{\mathbf{r}}^{\prime}+\left.\frac{\delta\left(E_{x c T}^{n a d}\left[\rho, \rho_{B}\right]+E_{C}\left[\rho_{A}\right]\right)}{\delta \rho(\mathbf{r})}\right|_{\rho(\mathbf{r})=\rho_{A}(\mathbf{r})=\left\langle\Phi_{A}\right| \hat{n}\left|\Phi_{A}\right\rangle}
\end{aligned}
$$

FDET for other descriptors obtained variationally

- FDET for embedded reference non-interacting system: $X_{A} \equiv \Phi_{A}^{K S}$ Wesolowski \& Warshel J. Phys. Chem. 97, (1993) 8050
- FDET for embedded one-matrix: $X_{A} \equiv \gamma_{A}$ Pernal \& Wesolowski, IJQC, 109 (2009) 2520

Variational methods - Summary

The above variants of FDET provide thus the exact formulation of the embedding problem for multiplicative embedding potentials.

The basic FDET equality:

$$
\min _{X_{A} \rightarrow N_{A}} E_{v_{A B}}^{F D E T\left(X_{A}\right)}\left[X_{A}, \rho_{B}\right]=E_{v_{A B}}^{F D E T\left(X_{A}\right)}\left[X_{A}^{o}, \rho_{B}\right]=E_{v_{A B}}^{H K}\left[\rho_{A}^{o}+\rho_{B}\right]
$$

is satisfied for any of the considered above descriptors if obtained from variational methods to solve the corresponding FDET eigenvalue equation.

From the practical points of view:

$\downarrow X_{A} \equiv \Psi_{A}^{\text {Full Configuration Interaction }}$ - not practical,
$\downarrow X_{A} \equiv \Psi_{A}^{\text {Truncated Configuration Interaction }}$ - not used commonly,
$\downarrow X_{A} \equiv \Phi_{A}^{\text {Single Determinant }}$ - requires approximations to $E_{c}[\rho]$ (not much success so far)
$\uparrow \quad X_{A} \equiv \Phi_{A}^{\mathrm{KS}}$ - quite successful used by us and others since introduction in 1993.

Non-variational methods to solve FDET eigenvalue equation

On the correlation potential in frozen-density embedding theory
[Wesolowski, J. Chem. Theor. \& Comput., 16 (2020) 6880]

FDET eigenvalue equation:

$$
\left[\hat{T}_{N_{A}}+\hat{V}_{N_{A}}^{e e}+\hat{V}_{A}+\hat{v}_{e m b}^{F D E T}\left[\rho_{A}, \rho_{B} ; v_{B}\right]\right] \Psi_{A}=\lambda \Psi_{A}
$$

The basic equality of FDET:

$$
\min _{\Psi_{A} \rightarrow N_{A}} E_{v_{A B}}^{F D E T}\left[\Psi_{A}, \rho_{B}\right]=E_{v_{A B}}^{F D E T}\left[\Psi_{A}^{o}, \rho_{B}\right]=E_{v_{A B}}^{H K}\left[\rho_{A}^{0}+\rho_{B}\right]
$$

is satisfied only if Ψ_{A} (or any other descriptor) is obtained variationally AND for self-consistent embedding potential.

Which ρ_{A} to use in $v_{\text {emb }}^{F D E T}\left[\rho_{A}, \rho_{B} ; v_{B}\right]$ and how to use the obtained λ and $\rho_{A}(\mathbf{r})=$ $\left\langle\Psi_{A}\right| \hat{n}\left|\Psi_{A}\right\rangle$ in non-variational calcultions to obtain the energy consistent with the Hohenberg-Kohn functional?

Several authors (Carter, Neugebauer, Höffener, and others) developed methods, in which various arbitrary additional approximations are made in the FDET eigenvalue equation and non-variational methods to solve it. The choices were motivated by numerical significance or "intuition".

Theorem (the variant for single reference methods)
Wesolowski, J. Chem. Theor. \& Comput., 16 (2020) 6880

$$
\begin{aligned}
E_{v_{A B}}^{H K}\left[\rho_{A}^{o}+\rho_{B}\right] & =E_{v_{A B}}^{F D E T}\left[\tilde{\Phi}_{A}^{0}, \rho_{B}\right]+\tilde{E}_{v^{\prime}}^{c}-\int \tilde{\rho}_{A}^{0}(\mathbf{r})\left(\int \Delta \rho_{v^{\prime}}^{c}\left(\mathbf{r}^{\prime}\right) f_{x c t}^{n a d}\left[\tilde{\rho}_{A}^{0}, \rho_{B}\right]\left(\mathbf{r}, \mathbf{r}^{\prime}\right) d \mathbf{r}^{\prime}\right) d \mathbf{r} \\
& +O\left(\Delta^{2} \rho\right)
\end{aligned}
$$

where,

$$
\begin{gathered}
v^{\prime}(\mathbf{r})=v_{A}(\mathbf{r})+v_{e m b}^{\mathrm{FDET}}\left[\tilde{\rho}_{A}^{\mathrm{o}}, \rho_{B} ; v_{B}\right](\mathbf{r}) \\
f_{x c t}^{n a d}\left[\rho, \rho_{B}\right]\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\frac{\delta^{2} E_{x c t}^{n a d}\left[\rho, \rho_{B}\right]}{\delta \rho(\mathbf{r}) \delta \rho\left(\mathbf{r}^{\prime}\right)}
\end{gathered}
$$

and where $\Delta \rho_{v^{\prime}}^{c}(\mathbf{r})$ and $\tilde{E}_{v^{\prime}}^{c}$ is the correlation correction to density and to energy in the auxiliary $N_{A^{-}}$electron system defined by a fixed external potential $v^{\prime}(\mathbf{r})$.

The equality holds if the embedded determinant is obtained variationaly and at self-consistent embedding potential!

Theorem (the variant for multi-reference methods)
Wesolowski, J. Chem. Theor. \& Comput., 16 (2020) 6880

$$
\begin{aligned}
E_{v_{A B}}^{H K}\left[\rho_{A}^{o}+\rho_{B}\right] & =E_{v_{A B}}^{F D E T}\left[\tilde{\Psi}_{A}^{M R^{0}}, \rho_{B}\right]+\tilde{E}_{v^{\prime}}^{c(\text { dynamic })} \\
& -\int \tilde{\rho}_{A}^{0}(\mathbf{r})\left(\int \Delta \rho_{v^{\prime}}^{c(\text { dynamic })}\left(\mathbf{r}^{\prime}\right) f_{x c t}^{n a d}\left[\tilde{\rho}_{A}^{0}, \rho_{B}\right]\left(\mathbf{r}, \mathbf{r}^{\prime}\right) d \mathbf{r}^{\prime}\right) d \mathbf{r}+O\left(\Delta^{2} \rho\right)
\end{aligned}
$$

where,

$$
\begin{gathered}
v^{\prime}(\mathbf{r})=v_{A}(\mathbf{r})+v_{\text {emb }}^{\mathrm{FDET}}\left[\tilde{\rho}_{A}^{\circ}, \rho_{B} ; v_{B}\right](\mathbf{r}) \\
f_{x c t}^{n a d}\left[\rho, \rho_{B}\right]\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\frac{\delta^{2} E_{x c t}^{n a d}\left[\rho, \rho_{B}\right]}{\delta \rho(\mathbf{r}) \delta \rho\left(\mathbf{r}^{\prime}\right)}
\end{gathered}
$$

and where $\Delta \rho_{v^{\prime}}^{c(\text { dynamic })}(\mathbf{r})$ and $\tilde{E}_{v^{\prime}}^{c(\text { dynamic })}$ is the "dynamic" correlation correction to density and to energy in the auxiliary N_{A}-electron system defined by a fixed external potential $v^{\prime}(\mathbf{r})$.

The equality holds if the embedded multi-reference wavefunction is obtained variationaly and at self-consistent embedding potential!
A) Interfacing FDET with methods to generate ρ_{B} and v_{B}

Geneva:

A. Zech
C. GonzalezEspinoza

Heidelberg:

A. Dreuw
S. Präger

```
Upper bound of E E
Excited states
Approximating the T}\mp@subsup{T}{S}{nad}[\mp@subsup{\rho}{A}{},\mp@subsup{\rho}{B}{}]\mathrm{ component of E Exct [ [ 
```

N-representability of the target density in Frozen-Density Embedding Theory based methods: Numerical significance and its relation to electronic polarisation

Ricardi, Gonzalez-Espinoza, \& Wesolowski, J. Chem. Phys. 157 (2022) 064108

The basic FDET equality yields only the upper bound of $E_{v_{A B}}^{0}$:

$$
\min _{\Psi_{A} \rightarrow N_{A}} E_{v_{A B}}^{F D E T}\left[\Psi_{A}, \rho_{B}\right]=E_{v_{A B}}^{F D E T}\left[\Psi_{A}^{o}, \rho_{B}\right]=\overbrace{E_{v_{A B}}^{H K}\left[\rho_{A}^{o}+\rho_{B}\right] \geq E_{v_{A B}}^{H K}\left[\rho_{A B}^{o}\right]}^{\text {Error due to the choice of } \rho_{B}}=E_{v}^{o}
$$

Is $\Delta E=E_{v_{A B}}^{H K}\left[\rho_{A}^{o}+\rho_{B}\right]-E_{v_{A B}}^{H K}\left[\rho_{A B}^{o}\right.$ numerically significant if one takes as ρ_{B} the density of isolated molecule B ?

Numerical examples:

FDET-MP2 variant of FDET and $E_{x c t}^{n a d}\left[\rho_{A}, \rho_{B}\right] \approx \tilde{E}_{x c t}^{n a d}(L D A)\left[\rho_{A}, \rho_{B}\right]$
Ricardi, Gonzalez-Espinoza, \& Wesolowski, J. Chem. Phys. 157 (2022) 064108

Upper bound of $E_{v_{A B}}^{0}$ from FDET Excited states

Ricardi, Gonzalez-Espinoza, \& Wesolowski, J. Chem. Phys. 157 (2022) 064108
FDET-MP2 Interaction energy $E_{\text {int }}$ and the measure of non-negativity violation M for FDET calculations using different $\rho_{B}: \tilde{\rho}_{B}^{\text {opt }}$ (light blue), $\tilde{\rho}_{B}^{\text {isol }}$ (red) and polarised by electric field $\tilde{\rho}_{B}^{\text {prepol }}$ (dark blue). Horizontal lines are reference MP2 interaction energies.

- Non-interacting Hamiltonian: LR-TDDFT
T.A. Wesolowski, J. Am. Chem. Soc.,126 (2004) 11444
M.E. Casida, T.A. Wesolowski Intl. J.Quant. Chem. 2004, 96, 577
- Interacting Hamiltonian: Levy-Perdew theorem on extrema of $E_{v}^{H K}[\rho]$
T.A. Wesolowski, J. Chem. Phys., 140 (2014) 18A530
A. Zech, F. Aquilante, T.A. Wesolowski, J. Chem. Phys., 143 (2015) 164106

FDET eigenvalue equation might have more than just one stationary solution $k>0$

$$
\begin{aligned}
& {\left[\hat{T}_{N_{A}}+\hat{V}_{N_{A}}^{e e}+\hat{V}_{A}+\hat{v}_{e m b}^{F D E T}\left(\Psi_{A}^{k}\right)\right] \Psi_{A}^{k}=\lambda^{k} \Psi_{A}^{k} } \\
& \hat{v}_{e m b}^{F D E T}\left(\Psi_{A}^{k}\right)=v_{e m b}^{F D E T}\left[\rho_{A}^{k}, \rho_{B}, v_{B}\right](\mathbf{r}) \\
&=v_{B}(\mathbf{r})+\int \frac{\rho_{B}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}^{\prime}-\mathbf{r}\right|} d \overrightarrow{\mathbf{r}}^{\prime}+\left.\frac{\delta E_{x c}^{n a d}\left[\rho, \rho_{B}\right]}{\delta \rho(\mathbf{r})}\right|_{\rho(\mathbf{r})=\rho_{A}^{k}(\mathbf{r})=\left\langle\Psi_{A}^{k}\right| \hat{n}\left|\Psi_{A}^{k}\right\rangle}
\end{aligned}
$$

Ψ_{A}^{k} for different k are obtained with different embedding potential. They might be non-orthogonal. This undesired feature can be eliminated through the linearisation of $E_{x c T}^{n a d}\left[\rho, \rho_{B}\right]$:

$$
E_{x c T}^{n a d}\left[\rho, \rho_{B}\right] \approx E_{x c T}^{n a d(l i n)}\left[\rho, \rho_{A}^{r e f}, \rho_{B}\right]=E_{x c T}^{n a d}\left[\rho^{0}, \rho_{B}\right]+\int v_{x c T}^{n a d}\left[\rho^{0}, \rho_{B}\right]\left(\rho-\rho^{0}\right) d \mathbf{r}
$$

T.A. Wesolowski, J. Chem. Phys., 140 (2014) 18A530
A. Zech, F. Aquilante T.A. Wesolowski, J. Chem. Phys., 143 (2015) 164106

Upper bound of $E_{v A B}^{0}$ from FDET

Excited states

Approximating the $T_{s}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$ component of $E_{x c t}^{n a d}\left[\rho_{A}, \rho_{B}\right]$

Chromophores

1

2
$3=(2)^{-}$

$\mathrm{R}=\mathrm{H}$
$\mathrm{R}=\mathrm{Me} \quad 5$

6

7

8

9

10

11

12

Environments

$$
\begin{aligned}
& \left(\mathrm{H}_{2} \mathrm{O}\right)_{n} \mathrm{n}=1,10 \\
& \left(\mathrm{NH}_{3}\right)_{n}, \mathrm{n}=1,4 \\
& \text { mixed } \left.^{2} \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}\right) \\
& (\mathrm{HCOOH})_{n}, \mathrm{n}=1,2 \\
& (\mathrm{MeOH})_{n}, \mathrm{n}=1,3
\end{aligned}
$$

formamide, formimidamide, guanidine, acetamide, pyridine, HCOO^{-}

Statistics: 351 electronic excitations

$$
\begin{aligned}
& \Delta \epsilon=\epsilon_{\text {complex }}^{A D C(2)}-\epsilon_{\text {chromophore }}^{A D C(2)} \\
& \delta \epsilon=\epsilon_{\text {complex }}^{\text {FDET/ADC(2) }}-\epsilon_{\text {complex }}^{A D C(2)} \\
& M E=39 \mathrm{meV}(0.9 \mathrm{kcal} / \mathrm{mol}), \\
& \mathrm{SD}=43 \mathrm{meV}(1.0 \mathrm{kcal} / \mathrm{mol})
\end{aligned}
$$

Figure 1: Chromophores considered in this work are (1) 7 -hydroxyquinoline, (2) xanthine, (3) xanthinide, (4) 2-aminopurine, (5) 7-methyl-2-aminopurine, (6) pyridiniumyl benzimidazolide, (7) diketopyrrolopyrrole, (8) uracil, (9) benzaldehyde, (10) 4-dimethylaminopyridine, (11) 7-Amino-4-methylcoumarin and (12) benzene.
A. Zech, N. Ricardi, S. Prager, A. Dreuw \& TAW., J. Chem. Theor. \& Comput. 14 (2018) 4028

Notation, terminology, statement of the problem

Upper bound of $E_{v_{A B}}^{0}$ from FDET
Excited states
Approximating the $T_{s}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$ component of $E_{x c t}^{n a d}\left[\rho_{A}, \rho_{B}\right]$

Benchmarking vertical excitation energies

A. Zech, N. Ricardi, S. Prager, A. Dreuw \& TAW., J. Chem. Theor. \& Comput. 14 (2018) 4028

Excitation energies of embedded chromophores from Frozen-Density Embedding Theory using state-specific electron densities of the environment
M. Fu \&T.A. Wesolowski, J. Phys. Chem. A., 127 (2023) 535

Upper bound of $E_{V_{A B}}^{0}$ from FDET

Excited states

Approximating the $T_{s}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$ component of $E_{x c t}^{n a d}\left[\rho_{A}, \rho_{B}\right]$

Levy - PerdewTheorem

$$
E_{v} H K\left[\rho_{A B}^{j}+\rho_{B}^{j}\right]-E_{v} H K\left[\rho_{A B}^{o}+\rho_{B}^{o}\right]
$$

Fu\&Wesolowski2022

$$
\epsilon_{j}\left[\rho_{A}^{r e f}, \rho_{B}^{j}, \rho_{B}^{o}, v_{A B}\right]+O\left(\Delta^{2} \rho\right)
$$

$\epsilon_{j} \equiv \overbrace{\lambda_{j}\left[\rho_{A}^{r e f}, \rho_{B}^{j}\right]-\lambda_{o}\left[\rho_{A}^{r e f}, \rho_{B}^{j}\right]}^{\epsilon_{j}^{A}}$
$+\overbrace{\left\langle\Phi_{A}^{\prime o(j)}\right| \hat{H}_{A}+\hat{v}_{e m b}^{F D E T}\left[\rho_{A}^{r e f}, \rho_{B}^{j}\right]\left|\Phi_{A}^{\prime o(j)}\right\rangle-\left\langle\Phi_{A}^{\prime o(o)}\right| \hat{H}_{A}+\hat{v}_{e m b}^{F D E T}\left[\rho_{A}^{r e f}, \rho_{B}^{o}\right]\left|\Phi_{A}^{\prime o(o)}\right\rangle+E_{v}^{c}{ }_{j}-E_{v}^{c}{ }^{c}}^{\epsilon_{j}^{B}}$
$-\overbrace{\left(\int \rho_{A}^{r e f}(\mathbf{r}) v_{x c t}^{n a d}\left[\rho_{A}^{r e f}, \rho_{B}^{j}\right](\mathbf{r}) d \mathbf{r}-\int \rho_{A}^{r e f}(\mathbf{r}) v_{x c t}^{n a d}\left[\rho_{A}^{r e f}, \rho_{B}^{o}\right](\mathbf{r}) d \mathbf{r}\right)+E_{x c t}^{n a d}\left[\rho_{A}^{r e f}, \rho_{B}^{j}\right]-E_{x c t}^{n a d}\left[\rho_{A}^{r e f}, \rho_{B}^{o}\right]}^{\epsilon_{j}^{C}}$
$+\overbrace{E_{v_{B}}^{H K}\left[\rho_{B}^{j}\right]-E_{v_{B}}^{H K}\left[\rho_{B}^{o}\right]}^{\epsilon_{j}^{D}}+\overbrace{V_{A}\left[\rho_{B}^{j}\right]-}^{\epsilon_{j}^{E}} \overbrace{V_{A}\left[\rho_{B}^{o}\right]}^{E}$

Upper bound of $E_{v_{A B}}^{0}$ from FDET
Excited states
Approximating the $T_{s}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$ component of $E_{x c t}^{n a d}\left[\rho_{A}, \rho_{B}\right]$

(1) 7-hydroxyquinoline $\left(2 \mathrm{NH}_{3}\right.$)

(3) pyrimidine $\left(\mathrm{H}_{2} \mathrm{O}\right)$

(5) 7-hydroxyquinoline $(2 \mathrm{MeOH})$

(7) 7-hydroxyquinoline $\left(2 \mathrm{H}_{2} \mathrm{O}\right)$

(9) uracil($5 \mathrm{H}_{2} \mathrm{O}$)

(2) 7-hydroxyquinoline (MeOH)

(4) xanthine (MeCN)

(6) xanthine (MeOH)

(8) aminopurine $\left(\mathrm{H}_{2} \mathrm{O}\right)$

(10) 7-hydroxyquinoline(MeOH)

State specificity	ρ_{B}-polarising field	excitation energy avarage error (eV)
No	none	0.0468 ± 0.0414
No	isolated chromophore in ground state	0.0395 ± 0.0322
Yes	isolated chromophore in the corresponding state	0.0384 ± 0.0337
Yes	embedded chromophore in the corresponding state	0.0300 ± 0.0258

In state specific case, Eq. 14 from Fu\&Wesolowski, JPCA 2023 was used for ΔE_{J}. In state-non-specific case $\Delta E_{J}=\lambda_{J}-\lambda_{0}$.

eference shift (eV)

Notation, terminology, statement of the problem

Improving upon local density approximation for $v_{t}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$

- Problem detected and reported:

Frozen Density Functional Approach for ab initio Calculations of Solvated Molecules [Wesolowski \& Warshel, J. Phys. Chem. 97, (1993) 8050]

- Attempted solution:

Orbital-free effective embedding potential at nuclear cusps
[Lastra et al., J. Chem. Phys. 129 (2008) 074107]

- Solution found for $v_{t}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$ but not for $T_{s}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$:

A non-decomposable approximation on the complete density function space for the non-additive kinetic potential [Polak et al., J. Chem. Phys. 156 (2022) 044103]

- Solution found for $v_{t}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$ and $T_{s}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$:

Symmetrized non-decomposable approximations of the non-additive kinetic energy functional [Polak et al., J. Chem. Phys. 158 (2023) 17410]

Upper bound of $E_{v_{A B}}^{0}$ from FDET

Statement of the problem

Let us consider two subsystems comprising $N_{A B}$-electron system partitioned into N_{A} and N_{B} consistently with the number of electrons upon separation of the two subsystems.

$$
\tilde{v}_{e m b}^{F D E T}\left[\rho_{A}, \rho_{B}, v_{B}\right](\vec{r})=v_{B}(\vec{r})+\int \frac{\rho_{B}\left(\vec{r}^{\prime}\right)}{\left.\mid \vec{r}^{\prime}-\vec{r}\right) \mid} d \vec{r}^{\prime}+\tilde{v}_{x c t}^{n a d}\left[\rho_{A}, \rho_{B}\right](\vec{r})
$$

- $\tilde{v}_{\text {emb }}^{F D E T}\left[\rho_{A}, \rho_{B}, v_{B}\right](\vec{r})$ has a singularity at each nucleus due to v_{B}.
- What if:

A The used approximation for $v_{x c t}^{n a d}\left[\rho_{A}, \rho_{B}\right]$ is such that the singularity due to v_{B} remains negative and the total embedding potential has a bound state. and B The energy of this bound state is lower that that of one of the occupied orbitals obtained in the FDET eigenvalue equation.

Case B is in contradiction with our assumption that the partitioning $N_{A B}=N_{A}+N_{B}$ correspond to the dissociation limit.

Challenge for $\tilde{v}_{t}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$

Case B is not hypothetical: both exact $v_{x c}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$ and Coulomb component of $v_{e m b}^{F D E T}\left[\rho_{A}, \rho_{B}, v_{B}\right]$ are finite the nuclei. $\tilde{v}_{t}^{\text {nad }(L D A)}\left[\rho_{A}, \rho_{B}\right]$ is also finite.

$$
\tilde{v}_{e m b}^{F D E T}\left[\rho_{A}, \rho_{B}, v_{B}\right](\vec{r})=v_{B}(\vec{r})+\int \frac{\rho_{B}\left(\vec{r}^{\prime}\right)}{\left.\mid \vec{r}^{\prime}-\vec{r}\right) \mid} d \vec{r}^{\prime}+v_{x c t}^{n a d}\left[\rho_{A}, \rho_{B}\right](\vec{r})
$$

Challenge for $\tilde{v}_{t}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$:
It is the only component of $v_{x c t}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$ that can stop such an artificial transfer of electrons from A to B.

Remark:

In QM/MM practice this problem is usually pragmatically avoided by not using any basis sets centered on atoms in the environment. A proper theory should yield meaningful solutions for a complete basis set!

Exact relation for the functional $v_{t}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right](\mathbf{r})$

For $\int \rho_{B}(\mathbf{r}) d \mathbf{r}=2$ and $\rho_{A}(\mathbf{r}) \rightarrow 0$

$$
v_{t}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right](\mathbf{r}) \longrightarrow v_{t}^{\text {nad }(\text { limit })}\left[\rho_{B}\right](\mathbf{r})=-\frac{1}{4} \frac{\nabla^{2} \rho_{B}}{\rho_{B}(\mathbf{r})}+\frac{1}{8} \frac{\left|\nabla \rho_{B}\right|^{2}}{\rho_{B}^{2}(\mathbf{r})}
$$

Lastra et al., J. Chem. Phys. 129 (2008) 074107

This property of $v_{t}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right](\mathbf{r})$ cannot be reproduced by any decomposable approximation based on gradient-expansion approximation! But it is highly desirable.

$$
v_{t}^{\text {nad }(\text { limit })}\left[\rho_{B}^{\exp }\right](\mathbf{r})=-\frac{1}{4} \frac{\nabla^{2} \rho_{B}}{\rho_{B}(\mathbf{r})}+\frac{1}{8} \frac{\left|\nabla \rho_{B}\right|^{2}}{\rho_{B}^{2}(\mathbf{r})}=-\overbrace{-\frac{\zeta^{2}}{2}}^{\text {constant }}+\overbrace{\frac{\zeta}{r}}^{\text {repulsive }} \text { if } \rho_{B}^{\exp }(\mathbf{r})=A \exp (-2 \zeta r)
$$

Notation, terminology, statement of the problem

Upper bound of $E_{V A B}^{0}$ from FDET
Excited states
Approximating the $T_{s}^{n a d}\left[\rho_{A}, \rho_{B}\right]$ component of $E_{x c t}^{n a d}\left[\rho_{A}, \rho_{B}\right]$

Our first attempt: NDSD approximation

$$
\tilde{v}_{t}^{\operatorname{nad}(\mathrm{NDSD})}\left[\rho_{A}, \rho_{B}\right]=v_{t}^{\mathrm{nad}(\mathrm{LDA})}\left[\rho_{A}, \rho_{B}\right]+f^{\mathrm{NDSD}}\left(\rho_{B}\right) v_{t}^{\operatorname{limit}}\left[\rho_{B}\right]
$$

with $v_{t}^{\operatorname{nad}(\mathrm{TF})}\left[\rho_{A}, \rho_{B}\right]=\frac{5}{3} C_{T F}\left(\left(\rho_{A}+\rho_{B}\right)^{2 / 3}-\rho_{A}^{2 / 3}\right)$

$$
\begin{aligned}
& v_{t}^{\text {nad (limit) })}\left[\rho_{B}^{\exp }\right](\mathbf{r})= \\
& \overbrace{-\frac{1}{4} \frac{\nabla^{2} \rho_{B}}{\rho_{B}(\mathbf{r})}+\frac{1}{8} \frac{\left|\nabla \rho_{B}\right|^{2}}{\rho_{B}^{2}(\mathbf{r})}}^{\text {differential operator }} \\
&=\overbrace{-\frac{\zeta^{2}}{2}}^{\text {undesired }}+\overbrace{\frac{\zeta}{r}}^{\text {desired }} \text { if } \rho_{B}^{\exp }(\mathbf{r})=A \exp (-2 \zeta r)
\end{aligned}
$$

[Lastra et al., J. Chem. Phys. 129 (2008) 074107]

The follow up: Part I

The differential operator

$$
D_{\gamma}[\rho]=|\nabla \rho|^{2}-\gamma \rho \nabla^{2} \rho
$$

corresponds to $v_{t}^{\text {nad }(\text { limit })}\left[\rho_{B}^{e \times p}\right]$ if $\gamma=2$.

The analysis of spaces solving the homogeneous differential equation $D_{\gamma=2}[\rho]=0$ involves functions which cannot be electron densities. Only if $\gamma=1$, the solutions of $D_{\gamma}[\rho]=0$ are exponential densities, i.e. the functions covering completely the space of molecular electron densities.

NEW non-decomposable approximation:
does not contain the undesired constant!

$$
\tilde{v}_{t}^{\operatorname{nad}(\mathrm{NDCS})}\left[\rho_{A}, \rho_{B}\right]=v_{t}^{\operatorname{nad}(\mathrm{TF})}\left[\rho_{A}, \rho_{B}\right]+\overbrace{f^{\mathrm{NDCS}}\left(\rho_{B}\right) \cdot D_{\gamma=1}\left[\rho_{B}\right]}
$$

Polak et al., J. Chem. Phys. 156044103 (2022)

Variants of FDET

Approximations for numerical applications ρ_{B} from various " physics'

Upper bound of $E_{v_{A B}}^{0}$ from FDET
Excited states
Approximating the $T_{s}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$ component of $E_{x c t}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$

Differences between subsystem DFT density and the reference Kohn-Sham density

$$
\left\|\left(\rho_{A}+\rho_{B}-\rho_{r e f}\right)^{1 / 2}\right\|^{2}=\int\left(\left|\left(\rho_{A}+\rho_{B}-\rho_{r e f}\right)^{\frac{1}{2}}\right|^{2}+\left|\nabla\left(\rho_{A}+\rho_{B}-\rho_{r e f}\right)^{\frac{1}{2}}\right|^{2}\right)
$$

A	B	optimisation of ρ_{A} and ρ_{B} with various $\tilde{v}_{t}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$				$\left\\|\left(\rho_{A}^{\text {isol }}+\rho_{B}^{\text {isol }}-\rho_{\text {ref }}\right)^{1 / 2}\right\\|^{2}$
		TF	GEA2	NDSD	NDCS	
Li^{+}	$\mathrm{H}_{2} \mathrm{O}$	0.0620	0.1227	0.0508	0.0447	0.3675
Be^{2+}	$\mathrm{H}_{2} \mathrm{O}$	0.5149	0.7295	0.3951	0.2422	1.0457
Na^{+}	$\mathrm{H}_{2} \mathrm{O}$	0.0200	0.0711	0.0174	0.0168	0.2879
Mg^{2+}	$\mathrm{H}_{2} \mathrm{O}$	0.0942	0.2487	0.0695	0.0489	0.7177
K^{+}	$\mathrm{H}_{2} \mathrm{O}$	0.0678	-	-	0.0322	0.2418
Rb^{+}	$\mathrm{H}_{2} \mathrm{O}$	0.4949	0.5185	0.5461	0.4906	0.6546
Li^{+}	CO_{2}	0.0316	0.0797	0.0273	0.0270	0.4544
K^{+}	CO_{2}	0.0197	0.0630	-	0.0173	0.2926
Li^{+}	F_{2}	0.0279	0.0463	0.0222	0.0205	0.3031

TFand GEA2 denote the approximation for $T_{s}[\rho]$ used in decomposable approximations for $v_{t}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$; NDSD and NDCS are not decomposable.

Polak et al., J. Chem. Phys. 156044103 (2022)

Differences between subsystem DFT density and the reference Kohn-Sham density

$$
\left\|\left(\rho_{A}+\rho_{B}-\rho_{r e f}\right)^{1 / 2}\right\|^{2}=\int\left(\left|\left(\rho_{A}+\rho_{B}-\rho_{r e f}\right)^{\frac{1}{2}}\right|^{2}+\left|\nabla\left(\rho_{A}+\rho_{B}-\rho_{r e f}\right)^{\frac{1}{2}}\right|^{2}\right)
$$

A	B	optimisation of ρ_{A} and ρ_{B} with various $\tilde{v}_{t}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$				$\left\\|\left(\rho_{A}^{i s o l}+\rho_{B}^{i s o l}-\rho_{\text {ref }}\right)^{1 / 2}\right\\|^{2}$
		TF	GEA2	NDSD	NDCS	
$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O}$	0.0210	0.0311	0.0209	0.0224	0.0914
Li^{+}	F^{-}	0.2044	0.2839	0.1670	0.1465	0.4440
Li^{+}	Cl^{-}	0.2623	0.3788	0.2148	0.1843	0.6088
Li^{+}	Br^{-}	0.2969	0.4300	0.2440	0.2075	0.6736
Na^{+}	F^{-}	0.0691	0.1583	0.0578	0.0479	0.3592
Na^{+}	Cl^{-}	0.0619	0.1893	0.0505	0.0416	0.5231
Na^{+}	Br^{-}	0.0615	0.2071	0.0490	0.0404	0.5926
Be^{2+}	O^{2-}	1.1169	1.2709	0.9723	0.8114	2.1072
Mg^{2+}	O^{2-}	0.2988	0.5172	0.2205	0.1531	2.1176
HF	HF	0.0537	0.0441	0.0539	0.0591	0.1504
K^{+}	Cl^{-}	- ${ }^{2}$	$-^{2}$	- ${ }^{2}$	0.1969	0.4279
K^{+}	F^{-}	$-^{2}$	$-^{2}$	$-^{2}$	0.1929	0.4916

Polak et al., J. Chem. Phys. 156044103 (2022)

Decomposable $\tilde{v}_{t}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$ yield symmetric $\tilde{T}_{s}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$. $\tilde{T}_{s}^{\text {nad }(N D C S)}\left[\rho_{A}, \rho_{B}\right]$ corresponding to $v_{t}^{\text {nad }(N D C S)}\left[\rho_{A}, \rho_{B}\right]$ might not be symmetric.

And it is!

Complex				Interaction energies from subsystem DFT		
A	B	$\tilde{E}_{\text {int }}^{\mathrm{NDCS}}\left[\rho_{A}, \rho_{B}\right]$	$\tilde{E}_{\text {int }}^{\mathrm{NDCS}}\left[\rho_{B}, \rho_{A}\right]$	$E_{\text {int }}^{\mathrm{KS}}$		
Li^{+}	$\mathrm{H}_{2} \mathrm{O}$	-39.82	-37.90	-37.48		
Li^{+}	CO_{2}	-21.87	-20.72	-21.47		
Li^{+}	F^{-}	-194.80	-188.32	-187.56		
Li^{+}	Cl^{-}	-162.07	-157.22	-153.57		
Li^{+}	OH^{-}	-195.79	-189.80	-191.69		
$\mathrm{~K}^{+}$	F^{-}	-131.51	-140.90	-141.83		
$\mathrm{~K}^{+}$	Cl^{-}	-112.80	-119.64	-116.62		
$\mathrm{~K}^{+}$	OH^{-}	-138.21	-140.80	-142.08		
Mg^{2+}	O^{2-}	-696.66	-670.52	-666.35		
Mg^{2+}	$\mathrm{H}_{2} \mathrm{O}$	-87.24	-83.96	-85.21		
Be^{2+}	O^{2-}	-947.31	-883.99	-857.56		
Be^{2+}	$\mathrm{H}_{2} \mathrm{O}$	-176.28	-153.96	-149.97		

Polak et al., J. Chem. Phys. 158 (2023) 17410

Symmetrisation of $\tilde{T}_{s}^{\text {nad }(N D C S)}\left[\rho_{A}, \rho_{B}\right]$

- Straightforward solution:

$$
\begin{aligned}
& \tilde{T}_{s}^{n a d}(N D C S s y m) \\
& {\left[\rho_{A}, \rho_{B}\right] }=\tilde{T}_{s}^{n a d(N D C S)}\left[\rho_{A}, \rho_{B}\right]+\frac{1}{2} \tilde{T}_{s}^{\text {nad }(N D C S a s y m)}\left[\rho_{A}, \rho_{B}\right] \\
& \text { with } \\
& \tilde{T}_{s}^{n a d(N D C S a s y m)}\left[\rho_{A}, \rho_{B}\right]=\tilde{T}_{s}^{n a d(N D C S)}\left[\rho_{A}, \rho_{B}\right]-\tilde{T}_{s}^{n a d(N D C S)}\left[\rho_{B}, \rho_{A}\right]
\end{aligned}
$$

But this would mean modification of the potential:

$$
\left.\tilde{v}_{t}^{n a d(N D C S s y m)}\left[\rho_{A}, \rho_{B}\right]=\tilde{v}_{t}^{n a d(N D C S)}\left[\rho_{A}, \rho_{B}\right]+\frac{\delta \tilde{T}_{s}^{n a d}(N D C S)}{}\left[\rho_{B}, \rho_{A}\right]\right)
$$

- Our solution [Polak et al., J. Chem. Phys. 158 (2023) 17410]

$$
\tilde{T}_{s}^{n a d(N D C S s y m)}\left[\rho_{A}, \rho_{B}\right]=\tilde{T}_{s}^{n a d(N D C S)}\left[\rho_{A}, \rho_{B}\right]+C^{s y m} \int \rho_{A} \frac{\delta \tilde{T}_{s}^{\text {nad }(N D C S)}\left[\rho_{B}, \rho_{A}\right]}{\delta \rho_{A}} d \mathbf{r}
$$

and choosing the constant $C^{s y m}$ to yield the first-order correction to $v_{s}^{\text {nad }(N D C S)}\left[\rho_{A}, \rho_{B}\right]$ making the whole functional symmetric.

Upper bound of $E_{v_{A B}}^{0}$ from FDET
Excited states
Approximating the $T_{s}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$ component of $E_{x c t}^{\text {nad }}\left[\rho_{A}, \rho_{B}\right]$

Complex		Interaction energies from subsystem DFT [kcal/mol]		KS
		TF	sym-NDCS	
Li^{+}	$\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & -40.66 \\ & (8.48) \end{aligned}$	$\begin{aligned} & -39.02 \\ & (4.11) \end{aligned}$	-37.48
Li^{+}	CO_{2}	$\begin{aligned} & -22.41 \\ & (4.37) \end{aligned}$	$\begin{aligned} & -21.39 \\ & (0.37) \end{aligned}$	-21.47
Li^{+}	F^{-}	$\begin{gathered} -196.75 \\ (4.90) \end{gathered}$	$\begin{gathered} -192.04 \\ (2.39) \end{gathered}$	-187.56
Li^{+}	Cl^{-}	$\begin{gathered} -164.08 \\ (6.84) \end{gathered}$	$\begin{gathered} -160.05 \\ (4.22) \end{gathered}$	-153.57
Li^{+}	OH^{-}	$\begin{gathered} -197.09 \\ (2.82) \end{gathered}$	$\begin{gathered} -193.20 \\ (0.79) \end{gathered}$	-191.69
K^{+}	F^{-}	...	$\begin{gathered} -136.94 \\ (3.45) \end{gathered}$	-141.83
K^{+}	Cl^{-}	\ldots	$\begin{gathered} -116.77 \\ (0.13) \end{gathered}$	-116.62
K^{+}	OH^{-}	\cdots	$\begin{gathered} -139.80 \\ (1.61) \end{gathered}$	-142.08
Mg^{2+}	O^{2-}	$\begin{gathered} -691.91 \\ (3.84) \end{gathered}$	$\begin{gathered} -684.44 \\ (2.71) \end{gathered}$	-666.35
Mg^{2+}	$\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & -89.21 \\ & (4.69) \end{aligned}$	$\begin{aligned} & -85.94 \\ & (0.85) \end{aligned}$	-85.21
Be^{2+}	O^{2-}	$\begin{aligned} & -954.86 \\ & (11.31) \end{aligned}$	$\begin{gathered} -920.58 \\ (7.31) \end{gathered}$	-857.86
Be ${ }^{2+}$	$\mathrm{H}_{2} \mathrm{O}$	$\begin{array}{r} -186.51 \\ (24.36) \end{array}$	$\begin{array}{r} -167.41 \\ (11.63) \end{array}$	-149.97

Notation, terminology, statement of the problem
Variants of FDET
Approximations for numerical applications ρ_{B} from various "physics"

Combining physical laws for different scales in FDET

$$
\overbrace{<\rho_{B}>_{\text {statistical ensemble }}}^{\text {continuum at scale of } \AA}(\mathbf{r})=\sum_{i}^{\text {atomtype }} \int P_{i}\left(\mathbf{r}^{\prime}\right) \rho^{i}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) d \mathbf{r}^{\prime}
$$

Kaminski et al.
Zhou et al.
Shedge et al.
Lyaktonov et al.
Gonzalez-Espinoza et al.
Ricardi et al.
Gonzalez-Espinoza et al.
J. Phys. Chem. A 114 (2010) 6082 Phys. Chem. Chem. Phys. 13 (2011) 10565 Chem. Phys. Chem. 15 (2014) 3291

Phys. Chem. Chem. Phys.(2016) 1821069
J. Chem. Theor. \& Comput. 18 (2022) 1072
J. Chem. Theor. \& Comput. (2023) in press

P from 3D-RISM

P from classical MD
to be published \} $\quad \mathrm{P}$ from MolecularDFT

Ricardi et al. Acta Cryst. - Foundation and Advances A76 57(2020) \} P from X-ray diffraction

Multi-level simulations based on Frozen Density Embedding Theory FDET for excitation energies of embedded chromophores

Averaged electrostatic potentials from MD

Number of frames
[C.E. Gonzalez-Espinoza, C. Rumble, D. Borgis, and T.A. Wesolowski, J. Chem. Theor. \& Comput. 18 (2022) 1072]

Aminocoumarin 153 in water
$<\rho_{B}>(\mathrm{MD})$

$$
<\rho_{B}>(\text { MoIDFT })
$$

Total solvent charge (MD)

Total solvent charge (MoIDFT)

[^0]Charge Density (a-u.)

Total solvent charge (MD)

ensity (a.u.)
0.05
0.03
0.01
-0.01
-0.03
-0.05
-0.05

Total solvent charge (MoIDFT)

. $3.000 \mathrm{e}-02$

- $3.000 e-02$
$1.000 \mathrm{e}-02$
$-1.000 \mathrm{e}-02$
$-1.000 \mathrm{e}-02$
$-3.000 \mathrm{e}-02$
$5.000 \mathrm{e}-02$

Total solvent charge (MD)

Total solvent charge (MoIDFT)

[^1]Charge Density (a-u.)

$<\rho_{B}>$ from MoIDFT

Total solvent charge (MoIDFT)

ρ_{B} from MoIDFT

Total solvent charge (MoIDFT)

Notation, terminology, statement of the problem

Structuring effect of the chromophore on the solvent
$<\rho_{B}>$ (acetonitrile)

$$
<\rho_{B}>\text { (water) }
$$

Structuring effect of the chromophore on the solvent

Total solvent charge (acetonitrile)

Charge Density (a-u.)

Performance of $<\rho_{B}>{ }^{M D F T}$ in FDET

Table: Vertical excitation energies shifts (in eV) for acetone and C153. Excitation energies of the chromophores in vacuum are 4.270 eV (acetone) and 3.135 eV (coumarin C153).

	Acetone		C153	
Source of $\left\langle\rho_{B}\right\rangle_{\text {ens }}$	Water	ACN	Water	ACN
MDFT	0.239	0.099	-0.250	-0.120
MD	0.230	0.118	-0.202	-0.097

Gonzalez-Espinoza, Rumble, Borgis, Wesolowski, to be publisjed

Notation, terminology, statement of the problem
$<\rho_{B}>$ from molecular crystals

Embedding-theory-based simulations using experimental electron densities for the environment
[N. Ricardi, M. Ernst, P. Macchi, and T. A. Wesolowski, Acta Crystallographica Foundation and Advances A76 57 (2020)]

FDET with ρ_{B} taken from molecular crystal of glycylglycine

The Team and Collaborators

Collaborations: A. Dreuw (Heidelberg), I. Schapiro (Tel Aviv), D. Borgis (Paris), C. Rumble (Philadelphia), P.

Macchi (Milan), M. Kowalska (UniGe-phys/CERN), M.
Gander (UniGe-math)

The Team

- Dr. Cristina Elisabeth Gonzalez Espinoza approximations, multi-scale methods, code development and integration
- Dr. Alexander Zech linearized FDET, code development
- Mr. Elias Polak NDCS
- Ms. Mingxue Fu TPA, state specific ρ_{B}
- Dr. Nicolo Ricardi electronic excitations, experimental ρ_{B}
- Mr. Yann Gimbal-Zofka EFG, polarisation of ρ_{B}
- Mr. Tanguy Englert NDCS
www.unige.ch/sciences/chifi/wesolowski/

[^0]: \boldsymbol{r}| 0.01 |
 | ---: |
 | 0.01 |
 | 0.00 |
 | -0.00 |
 | -0.01 |
 | -0.01 |

[^1]: \boldsymbol{r}| 0.01 |
 | ---: |
 | 0.01 |
 | 0.00 |
 | -0.00 |
 | -0.01 |
 | -0.01 |

