GNOF: Balanced treatment of electron correlation

Mario Piris

DIPC & UPV/EHU, 20018 Donostia, Spain IKERBASQUE, 48013 Bilbao, Spain

June 23, 2023

FACULTY OF CHEMISTRY UNIVERSITY OF THE BASQUE COUNTRY

Motivation

The need to overcome the drawbacks of currently used DFAs - Efficient description of strongly interacting electrons (molecular dissociation, Mott insulators, etc.)

Goal

Achieve a more accurate formalism than approximate density functionals, but less computationally demanding than ab initio wavefunction-based methods

Outline

• Introduction to the Natural Orbital Functional Theory (NOFT)

Reduced Density Matrices (RDMs)

○ N-representability

 \circ 2RDM reconstruction in terms of 1RDM: : $D[n_i, n_j, n_k, n_l]$

 \circ Electron-pairing-based NOFs \rightarrow GNOF

 Born-Oppenheimer Molecular Dynamics (BO-MD) based on an accurate NOF approximation (GNOF)

General considerations

- N-electron system at 0 temperature
- The ground state (GS)
- Non-relativistic spin-free N-electron Hamiltonian:

$$\widehat{H} = \sum_{ik} h_{ik} \widehat{a}_k^{\dagger} \widehat{a}_i + \frac{1}{2} \sum_{ijkl} \langle ij|kl \rangle \widehat{a}_k^{\dagger} \widehat{a}_l^{\dagger} \widehat{a}_j \widehat{a}_i$$

 $\hat{a}_{i}^{\dagger}(\hat{a}_{i})$: Fermion creation (annihilation) operators associated with the complete orthonormal spin-orbital set { $|i\rangle$ }

•
$$\left[\widehat{H}, \widehat{S}^2\right] = 0, \left[\widehat{H}, \widehat{S}_z\right] = 0 \implies S \neq 0$$
: GS is a multiplet

• The N-electron system in a mixed state (ensemble) is described by the N-particle density matrix statistical operator:

$${}^{N}\widehat{D} = \sum_{I} \omega_{I} |\Psi_{I}\rangle \langle \Psi_{I}|, \qquad \sum_{I} \omega_{I} = 1, \omega_{I} \ge 0$$

• The energy is an explicitly functional of the 1- and 2-RDMs:

$$E[N, \Gamma, D] = \sum_{I} h_{ik} \Gamma_{ki} + \sum_{ijkl} \langle ij|kl \rangle D_{kl,ij}$$
$$\Gamma_{ki} = \sum_{I} \omega_{I} \langle \Psi_{I}|\hat{a}_{k}^{\dagger} \hat{a}_{i}|\Psi_{I} \rangle , \quad D_{kl,ij} = \frac{1}{2} \sum_{I} \omega_{I} \langle \Psi_{I}|\hat{a}_{k}^{\dagger} \hat{a}_{l}^{\dagger} \hat{a}_{j} \hat{a}_{i}|\Psi_{I} \rangle$$

RDM's general properties: Hermiticity, Nonnegative diagonal elements, ...

Universal 1-RDM Functional:

$$E [N, \Gamma, D] \rightarrow E [N, \Gamma] = \sum_{ik} \mathcal{H}_{ik} \Gamma_{ki} + V_{ee} [N, \Gamma]$$
$$V_{ee} [N, \Gamma] = \min_{E^2 \ni D \rightarrow \Gamma} \left[\sum_{ijkl} \langle ij|kl \rangle D_{kl,ij} \right] \quad \text{(Gilbert 75, Levy 79, Valone 80)}$$
$$E_{gs} = \min_{\Gamma \in E^1} \left[\mathcal{H} [N, \Gamma] + V_{ee} [N, \Gamma] \right]$$

1. Limiting situations \Rightarrow minimization can be exactly solved. In general, constrained search is not appropriate for computation

2. V_{ee} [N, Γ] has been unreachable so far \Rightarrow We have to settle for approximations

Spectral decomposition of the 1RDM: $\Gamma(\mathbf{x}'_1, \mathbf{x}_1) = \sum_i n_i \phi_i(\mathbf{x}'_1) \phi^*_i(\mathbf{x}_1)$

 $\{\phi_i(\mathbf{x})\}$: natural spin-orbitals $\{n_i\}$: occupation numbers

- The 1RDM in the natural orbital (NO) representation: $\Gamma_{ki} = n_i \delta_{ki}$
- Ensemble N-representable 1RDM: $0 \le n_i \le 1$, $\sum_i n_i = N$
- The universal functional in NO representation:

$$E_{gs} = \min_{\{n_i, \phi_i\} \in E^1} \left\{ \sum_i n_i \mathcal{H}_{ii} + V_{ee} \left[N, \{n_i, \phi_i\} \right] \right\}$$
$$V_{ee} \left[N, \{n_i, \phi_i\} \right] = \min_{E^2 \ni D \to \{n_i, \phi_i\}} \left\{ \sum_{ijkl} \langle ij|kl \rangle D_{kl, ij} \right\}$$

Approximate 2RDM: $D[n_i, n_j, n_k, n_l]$

$$E \approx \sum_{i} n_i \mathcal{H}_{ii} + \sum_{ijkl} D[n_i, n_j, n_k, n_l] \langle ij|kl \rangle, \quad E_{gs} = \min_{\{n_i, \phi_i\} \in E^1} E[N, \{n_i, \phi_i\}]$$

- V_{ee} will not, in general, be entirely rebuilt
 - An approximate NOF still depends on D

The N-representability is twofold:

1) N-representable 1RDM 2) N-representable Functional

 $\mathfrak{D} \to \Gamma : \mathfrak{0} \leq n_i \leq \mathfrak{1}, \ \sum_i n_i = \mathbb{N}$ $\mathfrak{D} \to \mathbb{D} : E[\mathfrak{D}] \to E[\mathbb{N}, \{n_i, \phi_i\}]$

• For the 2RDM, a complete set of N-representability conditions that do not depend on higher-order RDMs remains unknown.

Alternative: Use the (2,2)-positivity conditions $D \ge 0, Q \ge 0, G \ge 0$

Singlet State in a two-electron system

• Exact Wavefunction & Energy (Lowdin & Shull 1955)

$$\Psi(\mathbf{x}_{1},\mathbf{x}_{2}) = \frac{1}{\sqrt{2}} \left(\alpha_{1}\beta_{2} - \alpha_{2}\beta_{1} \right) \sum_{p} f_{p} \sqrt{n_{p}} \varphi_{p} \left(\mathbf{r}_{1} \right) \varphi_{p} \left(\mathbf{r}_{2} \right), \ f_{p} = \pm 1$$
$$E\left[N, \{f_{p}, n_{p}, \varphi_{p}\} \right] = 2 \sum_{p} n_{p} H_{pp} + \sum_{p,q} f_{p} f_{q} \sqrt{n_{q} n_{p}} L_{pq}, \ L_{pq} = \langle pp | qq \rangle$$

Phase Dilemma: # of possible $\{f_p\}$ combinations is prohibitively large

• NOF:
$$E(2e^{-}) = 2\sum_{p} n_{p} H_{pp} + n_{1} L_{11} - 2\sum_{p=2}^{l} \sqrt{n_{1} n_{p}} L_{p1} + \sum_{p,q=2} \sqrt{n_{q} n_{p}} L_{pq}$$

Accurate NOF \Rightarrow Motivation for using **electron-pairs as basic units**!

Electron-pairing-based NOFs for N electrons:

$$D_{pq,rt}^{lphalpha}$$
 ; $D_{pq,rt}^{lphaeta}$; $D_{pq,rt}^{etaeta}$

I. PNOF5, PNOF6, PNOF7 [Phys. Rev. Lett. 119, 063002, 2017]

Static electron correlation

II. GNOF [Phys. Rev. Lett. 127, 233001, 2021]

Static + Dynamic electron correlation

The adjective 'global' is used instead of 'universal': GNOF \neq Valone's exact.

GNOF for Singlet States

$$E = E^{intra} + E^{inter}$$

2
$$E^{inter} = \sum_{p,q=1}^{N_B} I \left\{ n_q n_p \left(2J_{pq} - K_{pq} \right) + \left(1 - \delta_{q\Omega^b} \delta_{p\Omega^b} \right) \right.$$

 $\left[n_q^d n_p^d + \Pi \left(n_q^d, n_p^d \right) - \sqrt{n_q h_q n_p h_p} \right] L_{pq}$

prime indicates that only the inter-subspace terms are taking into account (p ∈ Ω_f, q ∈ Ω_g, f ≠ g).

Dynamic Hole and Occupation Number

$$h_g^d = h_g \cdot e^{-\left(rac{h_g}{h_c}
ight)^2}, \quad n_p^d = n_p \cdot e^{-\left(rac{h_g}{h_c}
ight)^2}, \quad g = \overline{1, \mathrm{N}/2}, \quad p \in \Omega_g$$

Dynamic hole for $h_c = 0.02\sqrt{2}$.

GNOF for Multilet States: $N = N_{II} + N_{I}$

 $\langle \hat{S}_z \rangle = \sum \omega_M \langle SM | \hat{S}_z | SM \rangle = 0 \Rightarrow$ the spin-restricted theory can be adopted M = -STotal Spin: $\langle \hat{S}^2 \rangle = \frac{N_I}{2} \left(\frac{N_I}{2} + 1 \right) \rightarrow S = \frac{N_I}{2}, \quad 2S + 1 = N_I + 1$ $E = E^{intra} + E^{inter}_{HF} + E^{inter}_{sta} + E^{inter}_{dyn}, \qquad N_{\Omega} = N_{II}/2 + N_{I}$ $E^{intra} = \sum_{g=1}^{N_{II}/2} E_g + \sum_{g=N_{II}/2+1}^{N_{\Omega}} H_{gg}, \quad E^{inter}_{HF} = \sum_{p,q=1}^{N_B} ' n_q n_p \left(2J_{pq} - K_{pq} \right)$ $\boldsymbol{E}_{sta}^{inter} = -\left(\sum_{p=1}^{N_{\Omega}}\sum_{q=N_{\Omega}+1}^{N_{B}} + \sum_{p=N_{\Omega}+1}^{N_{B}}\sum_{q=1}^{N_{\Omega}} + \sum_{p,q=N_{\Omega}+1}^{N_{B}}\right)'\sqrt{n_{q}h_{q}n_{p}h_{p}}L_{pq}$ $-\frac{1}{2}\left(\sum_{p=1}^{N_{\rm II}/2}\sum_{q=N_{\rm II}/2+1}^{N_{\Omega}}+\sum_{p=N_{\rm II}/2+1}^{N_{\Omega}}\sum_{q=1}^{N_{\rm II}/2}\right)'\sqrt{n_qh_qn_ph_p}L_{pq}-\frac{1}{4}\sum_{p,q=N_{\rm II}/2+1}^{N_{\Omega}}K_{pq}$ $E_{dyn}^{inter} = -\left(\sum_{p=1}^{N_{II}/2}\sum_{q=N_{O}+1}^{N_{B}} + \sum_{p=N_{O}+1}^{N_{B}}\sum_{q=1}^{N_{II}/2}\right)'\left(\sqrt{n_{q}^{d}n_{p}^{d}} - n_{q}^{d}n_{p}^{d}\right)L_{pq}$ $+\sum_{p=q=N_{p}+1}^{N_{B}} \prime \left(\sqrt{n_{q}^{d}n_{p}^{d}}+n_{q}^{d}n_{p}^{d}\right) L_{pq}$

Total energies (Hartrees)

Molecules at the Exp. Geom. (cc-pVTZ)

Atoms (aug-cc-pVTZ)

GS	GNOF	CCSD(T)	Molecule	MP2	GNOF	CCSD(T)
² <i>S</i>	-0.49983	-0.49983	CH₄	-40.43238	-40.45533	-40.45960
1 <i>S</i>	-2.90084	-2.90084	C₂H ₆	-79.67171	-79.71166	-79.71789
2 <i>S</i>	-7.45318	-7.45338	H₂CO	-114.34175	-114.36809	-114.36928
1 <i>S</i>	-14.63382	-14.63565	нсоон	-189.51455	-189.54192	-189.54659
2 _P	-24.60751	-24.60912	C ₂ FH ₃	-177.58430	-177.62610	-177.62758
з _Р	-37.79635	-37.79712	C₂H₅N	-133.70022	-133.73644	-133.74992
4 <i>S</i>	-54.52947	-54.53421	$C_2H_2O_2$	-227.51149	-227.54481	-227.55734
з _Р	-75.00049	-74.99967	CH₃NH₂	-95.69653	-95.73376	-95.73676
2 _P	-99.65391	-99.65218	CH3OCH3	-154.78170	-154.83262	-154.83576
1 _S	-128.8442	-128.8440	CH₃CH₂OH	-154.80194	-154.84906	-154.85458
	0.0012	-	MAE (55)	30 mHa	8 mHa	-
	GS 2 _S 1 _S 2 _S 1 _S 2 _P 3 _P 4 _S 3 _P 2 _P 1 _S	GSGNOF 2S -0.49983 1S -2.90084 2S -7.45318 1S -14.63382 2P -24.60751 3P -37.79635 4S -54.52947 3P -75.00049 2P -99.65391 1S -128.8442	GS GNOF CCSD(T) ² S -0.49983 -0.49983 ¹ S -2.90084 -2.90084 ² S -7.45318 -7.45338 ¹ S -14.63382 -14.63565 ² P -24.60751 -24.60912 ³ P -37.79635 -37.79712 ⁴ S -54.52947 -54.53421 ³ P -75.00049 -74.99967 ² P -99.65391 -99.65218 ¹ S -128.8442 -128.8440	GSGNOFCCSD(T)Molecule 2S -0.49983-0.49983CH4 1S -2.90084-2.90084C2H6 2S -7.45318-7.45338H2CO 1S -14.63382-14.63565HCOOH 2P -24.60751-24.60912C2FH3 3P -37.79635-37.79712C2H5N 4S -54.52947-54.53421C2H2O2 3P -75.00049-74.99967CH3NH2 2P -99.65391-99.65218CH3OCH3 1S -128.8442-128.8440CH3CH2OH	GS GNOF CCSD(T) Molecule MP2 ² S -0.49983 -0.49983 CH ₄ -40.43238 ¹ S -2.90084 -2.90084 C ₂ H ₆ -79.67171 ² S -7.45318 -7.45338 H ₂ CO -114.34175 ¹ S -14.63382 -14.63565 HCOOH -189.51455 ² P -24.60751 -24.60912 C ₂ FH ₃ -177.58430 ³ P -37.79635 -37.79712 C ₂ H ₅ N -133.70022 ⁴ S -54.52947 -54.53421 C ₂ H ₂ O ₂ -227.51149 ³ P -75.00049 -74.99967 CH ₃ NH ₂ -95.69653 ² P -99.65391 -99.65218 CH ₃ OCH ₃ -154.78170 ¹ S -128.8442 -128.8440 CH ₃ CH ₂ OH -154.80194 ¹ S -128.8442 -128.8440 CH ₃ CH ₂ OH -154.80194 0.0012 - MAE (55) 30 mHa	GS GNOF CCSD(T) Molecule MP2 GNOF ² S -0.49983 -0.49983 CH ₄ -40.43238 -40.45533 ¹ S -2.90084 -2.90084 C ₂ H ₆ -79.67171 -79.71166 ² S -7.45318 -7.45338 H ₂ CO -114.34175 -114.36809 ¹ S -14.63382 -14.63565 HCOOH -189.51455 -189.54192 ² P -24.60751 -24.60912 C ₂ FH ₃ -177.58430 -177.62610 ³ P -37.79635 -37.79712 C ₂ H ₅ N -133.70022 -133.73644 ⁴ S -54.52947 -54.53421 C ₂ H ₂ O ₂ -227.51149 -227.54481 ³ P -75.00049 -74.99967 CH ₃ NH ₂ -95.69653 -95.73376 ² P -99.65391 -99.65218 CH ₃ OCH ₃ -154.78170 -154.83262 ¹ S -128.8442 -128.8440 CH ₃ CH ₂ OH -154.80194 -154.84906 ¹ S -128.8442 -128.8440 CH ₃ CH ₂ OH -154.80194 -154.84906 ¹ S -10012 -

Potential Energy Curves

Comparison with the experimental data

Mol	Mul	R_{e}	\mathbf{R}_{e}^{exp}	D_e	D_{e}^{exp}	ω_e	ω_e^{exp}
F_2	1	1.35	1.41	40.9	39.2	1212	917
H_2	1	0.74	0.74	108.6	109.5	4404	4401
BN	3	1.29	1.32	102.3	94-133	1851	1515
CN	2	1.14	1.17	171.6	177.4	2344	2069
CF	2	1.26	1.27	129.0	128.7	1238	1308
CO	1	1.11	1.13	259.6	259.3	2391	2170

 R_e (Å), D_e (kcal/mol), and ω_e (cm⁻¹)

PECs for the singlet ground state of the CO

Benchmarking GNOF against FCI in one, two and three dimensions

I. Mitxelena & M. Piris, J. Chem. Phys. 156, 214102 (2022)

Dissociation curves corresponding to a 1D lineal chain of 10 H

Dissociation curves corresponding to a 2D ring of 10 H

Dissociation curves corresponding to a 2D sheet of 10 H

Dissociation curves corresponding to a 3D pyramid of 10 H

Dissociation curves corresponding to a 1D lineal chain of 50 H

Alejandro Rivero

Born-Oppenheimer Molecular Dynamics based on GNOF

 In BOMD calculations, the set of nuclei are propagated according to classical equations of motion, on the potential energy surface (PES) obtained by *on-the-fly* solution of the quantum-mechanical electronic structure problem

$$M_A \ddot{R}_A(t) = -\nabla_A E$$
$$E = E_{nuc} + E_{el} = \sum_{A < B} \frac{Z_A Z_B}{R_{AB}} + E_{el}$$
$$E_{el} = \sum_i n_i \mathcal{H}_{ii} + V_{ee} \left[N, \{n_i\}, \{\phi_i(\mathbf{x})\}\right]$$

- BOMD is, by definition, the true classical dynamics on the BO PES, assuming that the electronic problem is solved exactly (within a given model chemistry) at each time step
- Energy conservation is clearly a desirable feature

MO-LCAO:
$$\phi_i(\mathbf{x}) = \sum_{\upsilon} C_{\upsilon i} \zeta_{\upsilon}(\mathbf{x}), \ E_{el} = \sum_{\mu \upsilon} \Gamma_{\mu \upsilon} \mathcal{H}_{\mu \upsilon} + \sum_{\mu \upsilon \eta \delta} D_{\mu \eta \upsilon \delta} \langle \mu \eta | \upsilon \delta \rangle$$

The analytic energy gradients with respect to nuclear motion

$$\frac{dE}{dx_A} = \frac{\partial E_{el}}{\partial x_A} + \frac{\partial E_{nuc}}{\partial x_A} + \sum_{\mu j} \frac{\partial E_{el}}{\partial C_{\mu j}} \frac{\partial C_{\mu j}}{\partial x_A} + \sum_i \frac{\partial E_{el}}{\partial n_i} \frac{\partial n_i}{\partial x_A}$$
$$\sum_{\mu j} \frac{\partial E_{el}}{\partial C_{\mu j}} \frac{\partial C_{\mu j}}{\partial x_A} = -\sum_{\mu v} \lambda_{\mu v} \frac{\partial S_{\mu v}}{\partial x_A}, \quad \lambda_{\mu v} = \sum_{ij} C_{\mu j} \lambda_{ji} C_{vi} \quad (\text{density force})$$
$$\sum_i \frac{\partial n_i}{\partial x_A} = 0 \rightarrow \sum_i \frac{\partial E_{el}}{\partial n_i} \frac{\partial n_i}{\partial x_A} = \mu \sum_i \frac{\partial n_i}{\partial x_A} = 0.$$
$$\frac{dE}{dx_A} = \sum_{\mu v} \Gamma_{\mu v} \frac{\partial \mathcal{H}_{\mu v}}{\partial x_A} + \sum_{\mu v \eta \delta} D_{\mu \eta v \delta} \frac{\partial \langle \mu \eta | v \delta \rangle}{\partial x_A} + \frac{\partial E_{nuc}}{\partial x_A} - \sum_{\mu v} \lambda_{\mu v} \frac{\partial S_{\mu v}}{\partial x_A}$$

 $NH(^{3}\Sigma) + NH(^{3}\Sigma) \longrightarrow N_{2}(^{1}\Sigma) + H(^{2}S) + H(^{2}S)$

Speed 2x

$NH(^{3}\Sigma) + NH(^{3}\Sigma) \longrightarrow N_{2}(^{1}\Sigma) + H(^{2}S) + H(^{2}S)$

dt = 1fs $R_{ini} = 10 \text{ Å}$

Speed 2x

Π9 Π

Donostia Natural Orbital Functional Program

https://github.com/DoNOF/DoNOFsw

- Unconstrained Occupancy Optimization
- Self-consistent iterative diagonalization procedure for NOs
- Geometry optimization (analytic gradients)
- Harmonic vibrational frequencies (numerical Hessian)
- Natural and canonical representations of molecular orbitals
- Ionization potential using extended Koopmans' Theorem (EKT)

More details in https://donof.readthedocs.io/

TAKE-HOME MESSAGES

• Approximate NOF still depends on the 2RDM: Functional N-representability

- GNOF: recover dynamic and non-dynamic electronic correlations
- BO-MD based on GNOF

Thank you for your attention !!!